A STUDY TOWARDS DEVELOPMENT OF AN AUTOMATED HAPTIC USER INTERFACE (AHUI) FOR INDIVIDUALS WHO ARE BLIND OR VISUALLY IMPAIRED

An increasing amount of information content used in schools, work and everyday living is being presented in graphical form, creating accessibility challenges for individuals who are blind or visually impaired, especially in dynamic environments, such as over the internet. Refreshable haptic displays...

Full description

Bibliographic Details
Main Author: Rastogi, Ravi
Format: Others
Published: VCU Scholars Compass 2012
Subjects:
Online Access:http://scholarscompass.vcu.edu/etd/2859
http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=3858&context=etd
Description
Summary:An increasing amount of information content used in schools, work and everyday living is being presented in graphical form, creating accessibility challenges for individuals who are blind or visually impaired, especially in dynamic environments, such as over the internet. Refreshable haptic displays that can interact with computers can be used to access such information tactually. Main focus of this study was the development of specialized computer applications allowing users to actively compensate for the inherent issues of haptics when exploring visual diagrams as compared to vision, which we hypothesized, would improve the usability of such devices. An intuitive zooming algorithm capable of automatically detecting significant different zoom levels, providing auditory feedback, preventing cropping of information and preventing zooming in on areas where no features were present was developed to compensate for the lower spatial resolution of haptics and was found to significantly improve the performance of the participants. Another application allowing the users to perform dynamic simplifications on the diagram to compensate for the serial based nature of processing 2D geometric information was tested and found to significantly improve the performance of the participants. For both applications participants liked the user interface and found it more usable, as expected. In addition, in this study we investigated methods that can be used to effectively present different visual features as well as overlaying features present in the visual diagrams. Three methods using several combinations of tactile and auditory modalities were tested. We found that the performance significantly improves when using the overlapping method using different modalities. For tactile only methods developed for deaf blind individuals, the toggle method was surprisingly preferred as compared to the overlapping method.