Brain Controlled Switch

This study aims at designing and implementing a single channel stand-alone Brain-Controlled Switch (BCS) device, which records the electroencephalography (EEG) signals from the scalp using electrodes, amplifies it, eliminates interferences (associated with the EEG signals) and processes the EEG sign...

Full description

Bibliographic Details
Main Author: Bhuta, Dimple
Format: Others
Published: VCU Scholars Compass 2012
Subjects:
Online Access:http://scholarscompass.vcu.edu/etd/2795
http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=3794&context=etd
id ndltd-vcu.edu-oai-scholarscompass.vcu.edu-etd-3794
record_format oai_dc
spelling ndltd-vcu.edu-oai-scholarscompass.vcu.edu-etd-37942017-03-17T08:26:37Z Brain Controlled Switch Bhuta, Dimple This study aims at designing and implementing a single channel stand-alone Brain-Controlled Switch (BCS) device, which records the electroencephalography (EEG) signals from the scalp using electrodes, amplifies it, eliminates interferences (associated with the EEG signals) and processes the EEG signals to extract and decode temporal signal features to determine user’s intention of regulating an external switch. The design of our “brain-controlled switch” device is implemented using a bio-potential amplifier and a microcontroller. The bio-potential amplifier amplifies the EEG signals to a level sufficient for processing, eliminates interferences and ensures patient safety. The microcontroller (dsPIC30F4013) digitizes the amplified and conditioned analog EEG signals from the bio-potential amplifier, extracts the desired signal features for decoding and prediction of user’s intention and accordingly operates the external switch. When the user concentrates on an external visual stimulus or performs externally triggered movement (hand movement or motor imagery movement), a reproducible pattern appears in user’s EEG frequency bands. The analysis of these patterns is used to decode and predict user’s intention to operate an external switch. To realize our “brain-controlled switch”, we explored two EEG sources: steady-state visually evoked potentials (SSVEP) and beta rebounds, which are patterns generated in the EEG frequency bands associated with focusing on an external visual stimulus or performing externally triggered movements. In case of SSVEP based brain controlled switch, a repetitive visual stimulus (LED flickering at a specified frequency) was used. When the user concentrates on the flickering LED, a dominant fundamental frequency (equivalent to the flickering frequency) appears in the spectral representation of the EEG signals recorded at occipital lobes. Our microcontroller implemented a digital band pass filter to extract the frequency band containing this fundamental frequency and continuously took an average of the amplitude power every predetermined time interval. Whenever the amplitude average power exceeded the preset power threshold the external switch was turned ON. A healthy subject participated in this study, and it took approximately 3.14 ± 1.81 seconds of active concentration for the subject to turn ON the switch in real time with a false positive rate of 1.17%. In case of beta rebound based brain controlled switch, the subject was instructed to perform a brisk hand movement following an external synchronization signal. Our design focused on the post-movement beta rebound which occurs after the cessation of the movement to operate the external switch. Our microcontroller in this case implemented a digital band pass filter to extract the beta band and continuously took an average of its amplitude power every predetermined time interval. Whenever the amplitude average power exceeded the preset power threshold the external switch was turned ON. It took approximately 12.23 ± 7.39 seconds of active urging time by the subject to turn ON the switch in real time with a false positive rate of 9.33%. Thus we have designed a novel stand-alone BCS device which operates an external switch by decoding and predicting user’s intentions. 2012-05-08T07:00:00Z text application/pdf http://scholarscompass.vcu.edu/etd/2795 http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=3794&context=etd © The Author Theses and Dissertations VCU Scholars Compass Brain Computer Interface Biomedical Engineering and Bioengineering Engineering
collection NDLTD
format Others
sources NDLTD
topic Brain Computer Interface
Biomedical Engineering and Bioengineering
Engineering
spellingShingle Brain Computer Interface
Biomedical Engineering and Bioengineering
Engineering
Bhuta, Dimple
Brain Controlled Switch
description This study aims at designing and implementing a single channel stand-alone Brain-Controlled Switch (BCS) device, which records the electroencephalography (EEG) signals from the scalp using electrodes, amplifies it, eliminates interferences (associated with the EEG signals) and processes the EEG signals to extract and decode temporal signal features to determine user’s intention of regulating an external switch. The design of our “brain-controlled switch” device is implemented using a bio-potential amplifier and a microcontroller. The bio-potential amplifier amplifies the EEG signals to a level sufficient for processing, eliminates interferences and ensures patient safety. The microcontroller (dsPIC30F4013) digitizes the amplified and conditioned analog EEG signals from the bio-potential amplifier, extracts the desired signal features for decoding and prediction of user’s intention and accordingly operates the external switch. When the user concentrates on an external visual stimulus or performs externally triggered movement (hand movement or motor imagery movement), a reproducible pattern appears in user’s EEG frequency bands. The analysis of these patterns is used to decode and predict user’s intention to operate an external switch. To realize our “brain-controlled switch”, we explored two EEG sources: steady-state visually evoked potentials (SSVEP) and beta rebounds, which are patterns generated in the EEG frequency bands associated with focusing on an external visual stimulus or performing externally triggered movements. In case of SSVEP based brain controlled switch, a repetitive visual stimulus (LED flickering at a specified frequency) was used. When the user concentrates on the flickering LED, a dominant fundamental frequency (equivalent to the flickering frequency) appears in the spectral representation of the EEG signals recorded at occipital lobes. Our microcontroller implemented a digital band pass filter to extract the frequency band containing this fundamental frequency and continuously took an average of the amplitude power every predetermined time interval. Whenever the amplitude average power exceeded the preset power threshold the external switch was turned ON. A healthy subject participated in this study, and it took approximately 3.14 ± 1.81 seconds of active concentration for the subject to turn ON the switch in real time with a false positive rate of 1.17%. In case of beta rebound based brain controlled switch, the subject was instructed to perform a brisk hand movement following an external synchronization signal. Our design focused on the post-movement beta rebound which occurs after the cessation of the movement to operate the external switch. Our microcontroller in this case implemented a digital band pass filter to extract the beta band and continuously took an average of its amplitude power every predetermined time interval. Whenever the amplitude average power exceeded the preset power threshold the external switch was turned ON. It took approximately 12.23 ± 7.39 seconds of active urging time by the subject to turn ON the switch in real time with a false positive rate of 9.33%. Thus we have designed a novel stand-alone BCS device which operates an external switch by decoding and predicting user’s intentions.
author Bhuta, Dimple
author_facet Bhuta, Dimple
author_sort Bhuta, Dimple
title Brain Controlled Switch
title_short Brain Controlled Switch
title_full Brain Controlled Switch
title_fullStr Brain Controlled Switch
title_full_unstemmed Brain Controlled Switch
title_sort brain controlled switch
publisher VCU Scholars Compass
publishDate 2012
url http://scholarscompass.vcu.edu/etd/2795
http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=3794&context=etd
work_keys_str_mv AT bhutadimple braincontrolledswitch
_version_ 1718427868058353664