Exploring the Functional Interaction Between CaMK-II and p53

Calcium (Ca2+)/calmodulin-dependent kinase 2 (CaMK-II) is a multifunctional member of a family of Ca2+/calmodulin-dependent serine/threonine protein kinases that respond to transient intracellular calcium signaling. CaMK-II has been reported to be involved with transcription regulation, cell motilit...

Full description

Bibliographic Details
Main Author: Lai, Raymond
Format: Others
Published: VCU Scholars Compass 2011
Subjects:
p53
HEK
Online Access:http://scholarscompass.vcu.edu/etd/214
http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=1213&context=etd
Description
Summary:Calcium (Ca2+)/calmodulin-dependent kinase 2 (CaMK-II) is a multifunctional member of a family of Ca2+/calmodulin-dependent serine/threonine protein kinases that respond to transient intracellular calcium signaling. CaMK-II has been reported to be involved with transcription regulation, cell motility, neuronal development, cell cycle regulation, and more recently early development of vertebrates (Easley et al., 2008; Rothschild et al., 2009; Francescatto et al., 2010). Through previous work in the lab using tandem mass spectrometry and “substrate-trapping mutants”, tumor suppressor protein 53 (p53) was identified as a novel CaMK-II binding partner in tissue culture. In this study, I sought to provide characterization of the functional interaction of p53 and CaMK-II. First, a stable p53 knockdown human cell line (HEK) was established through lentiviral transduction of p53 shRNA and verified with immunoblots and immunostaining assays. Next, the localization of CaMK-II and the cell growth rate in these cells was determined. In wild type HEK cells, catalytically inactive CaMK-II inhibited cell growth, which is consistent with previous studies in mouse fibroblasts with pharmacological inhibition. p53-deficient cells were less sensitive to CaMK-II deficiencies using dominant negative CAMK-II, but not pharmacological disruption. The overall results of this study have provided significant clues to the mechanism between CaMK-II and p53 in the control of cell cycle progression.