OPIOID ADDICTION AND PREGNANCY: POTENTIAL EFFECTS OF SUBSTITUTION THERAPIES ON DEVELOPMENTAL MYELINATION

While most cells of the central nervous system (CNS) express opioid receptors, the role of the endogenous opioid system in CNS development remains poorly understood. Identification of opioid functions during brain maturation is particularly crucial in light of the increasing trend in opioid abuse an...

Full description

Bibliographic Details
Main Author: Eschenroeder, Andrew
Format: Others
Published: VCU Scholars Compass 2010
Subjects:
Online Access:http://scholarscompass.vcu.edu/etd/105
http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=1104&context=etd
id ndltd-vcu.edu-oai-scholarscompass.vcu.edu-etd-1104
record_format oai_dc
spelling ndltd-vcu.edu-oai-scholarscompass.vcu.edu-etd-11042017-03-17T08:31:51Z OPIOID ADDICTION AND PREGNANCY: POTENTIAL EFFECTS OF SUBSTITUTION THERAPIES ON DEVELOPMENTAL MYELINATION Eschenroeder, Andrew While most cells of the central nervous system (CNS) express opioid receptors, the role of the endogenous opioid system in CNS development remains poorly understood. Identification of opioid functions during brain maturation is particularly crucial in light of the increasing trend in opioid abuse and the use of opioid drugs during pregnancy. New substitution therapies in pregnant opioid addicts include buprenorphine, a mu opioid receptor partial agonist and kappa opioid receptor antagonist. However, while clinical studies demonstrated buprenorphine efficacy in reducing neonatal withdrawal symptoms, there is a lack of information on the potential effects of this drug on brain development. Previous work from our laboratory has shown that perinatal exposure to buprenorphine induces dose-dependent alterations in rat brain myelination. These time-specific effects suggested that both therapeutic and supra- therapeutic doses of the drug could alter the normal pattern of oligodendrocyte development. In support of this hypothesis, this thesis work has now found that buprenorphine exerts direct actions on the oligodendrocytes that are highly dependent on both the drug dose and stage of cell differentiation. When exposed to buprenorphine, oligodendrocyte progenitors isolated from 3-day-old rat brain exhibit increased cell proliferation. In contrast, treatment of more mature oligodendrocytes obtained from 9-day-old rat brain induces dramatic dose- specific effects on cell process network extension and membrane outgrowth. These later effects are accompanied by significant parallel changes in the expression of the four major splicing isoforms of myelin basic protein (MBP), a critical component of the myelin membrane and mature myelinating oligodendrocytes. Furthermore, similar dose-specific effects on MBP expression are also elicited by methadone, a mu opioid receptor agonist already approved for the treatment of pregnant opioid addicts. Experiments with CTOP, a highly selective antagonist of the mu opioid receptor, further contribute to the idea that this receptor subtype plays an important function in controlling oligodendrocyte maturation. These findings underscore the potential effects of opioid exposure during brain maturation and further indicate an important regulatory role of the endogenous opioid system in the control of oligodendrocyte development and myelination. 2010-05-14T07:00:00Z text application/pdf http://scholarscompass.vcu.edu/etd/105 http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=1104&context=etd © The Author Theses and Dissertations VCU Scholars Compass Life Sciences Physiology
collection NDLTD
format Others
sources NDLTD
topic Life Sciences
Physiology
spellingShingle Life Sciences
Physiology
Eschenroeder, Andrew
OPIOID ADDICTION AND PREGNANCY: POTENTIAL EFFECTS OF SUBSTITUTION THERAPIES ON DEVELOPMENTAL MYELINATION
description While most cells of the central nervous system (CNS) express opioid receptors, the role of the endogenous opioid system in CNS development remains poorly understood. Identification of opioid functions during brain maturation is particularly crucial in light of the increasing trend in opioid abuse and the use of opioid drugs during pregnancy. New substitution therapies in pregnant opioid addicts include buprenorphine, a mu opioid receptor partial agonist and kappa opioid receptor antagonist. However, while clinical studies demonstrated buprenorphine efficacy in reducing neonatal withdrawal symptoms, there is a lack of information on the potential effects of this drug on brain development. Previous work from our laboratory has shown that perinatal exposure to buprenorphine induces dose-dependent alterations in rat brain myelination. These time-specific effects suggested that both therapeutic and supra- therapeutic doses of the drug could alter the normal pattern of oligodendrocyte development. In support of this hypothesis, this thesis work has now found that buprenorphine exerts direct actions on the oligodendrocytes that are highly dependent on both the drug dose and stage of cell differentiation. When exposed to buprenorphine, oligodendrocyte progenitors isolated from 3-day-old rat brain exhibit increased cell proliferation. In contrast, treatment of more mature oligodendrocytes obtained from 9-day-old rat brain induces dramatic dose- specific effects on cell process network extension and membrane outgrowth. These later effects are accompanied by significant parallel changes in the expression of the four major splicing isoforms of myelin basic protein (MBP), a critical component of the myelin membrane and mature myelinating oligodendrocytes. Furthermore, similar dose-specific effects on MBP expression are also elicited by methadone, a mu opioid receptor agonist already approved for the treatment of pregnant opioid addicts. Experiments with CTOP, a highly selective antagonist of the mu opioid receptor, further contribute to the idea that this receptor subtype plays an important function in controlling oligodendrocyte maturation. These findings underscore the potential effects of opioid exposure during brain maturation and further indicate an important regulatory role of the endogenous opioid system in the control of oligodendrocyte development and myelination.
author Eschenroeder, Andrew
author_facet Eschenroeder, Andrew
author_sort Eschenroeder, Andrew
title OPIOID ADDICTION AND PREGNANCY: POTENTIAL EFFECTS OF SUBSTITUTION THERAPIES ON DEVELOPMENTAL MYELINATION
title_short OPIOID ADDICTION AND PREGNANCY: POTENTIAL EFFECTS OF SUBSTITUTION THERAPIES ON DEVELOPMENTAL MYELINATION
title_full OPIOID ADDICTION AND PREGNANCY: POTENTIAL EFFECTS OF SUBSTITUTION THERAPIES ON DEVELOPMENTAL MYELINATION
title_fullStr OPIOID ADDICTION AND PREGNANCY: POTENTIAL EFFECTS OF SUBSTITUTION THERAPIES ON DEVELOPMENTAL MYELINATION
title_full_unstemmed OPIOID ADDICTION AND PREGNANCY: POTENTIAL EFFECTS OF SUBSTITUTION THERAPIES ON DEVELOPMENTAL MYELINATION
title_sort opioid addiction and pregnancy: potential effects of substitution therapies on developmental myelination
publisher VCU Scholars Compass
publishDate 2010
url http://scholarscompass.vcu.edu/etd/105
http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=1104&context=etd
work_keys_str_mv AT eschenroederandrew opioidaddictionandpregnancypotentialeffectsofsubstitutiontherapiesondevelopmentalmyelination
_version_ 1718428635069677568