Exchange Mechanisms in Macroscopic Ordered Organic Magnetic Semiconductors

Small molecule organic semiconductors such as phthalocyanines and their derivatives represent a very interesting alternative to inorganic semiconductor materials for the development of flexible electronic devices such as organic thin field effect transistors, organic Light Emitting Diodes and photo-...

Full description

Bibliographic Details
Main Author: Rawat, Naveen
Format: Others
Language:en
Published: ScholarWorks @ UVM 2015
Subjects:
Online Access:http://scholarworks.uvm.edu/graddis/480
http://scholarworks.uvm.edu/cgi/viewcontent.cgi?article=1479&context=graddis
id ndltd-uvm.edu-oai-scholarworks.uvm.edu-graddis-1479
record_format oai_dc
spelling ndltd-uvm.edu-oai-scholarworks.uvm.edu-graddis-14792017-03-17T08:44:36Z Exchange Mechanisms in Macroscopic Ordered Organic Magnetic Semiconductors Rawat, Naveen Small molecule organic semiconductors such as phthalocyanines and their derivatives represent a very interesting alternative to inorganic semiconductor materials for the development of flexible electronic devices such as organic thin field effect transistors, organic Light Emitting Diodes and photo-voltaic cells. Phthalocyanine molecules can easily accommodate a variety of metal atoms as well in the central core of the molecule, resulting in wide range of magnetic properties. Exploration of optical properties of organic crystalline semiconductors thin films is challenging due to sub-micron grain sizes and the presence of numerous structural defects, disorder and grain boundaries. However, this can be overcome by fabricating macroscopically ordered semiconductor films by solution processing. Presence of fewer grain boundaries and defects while modifying the pi orbital overlap by controlling the molecular stacking by forming macroscopic long range ordered grains, was essential in understanding the delocalization and diffusion length and its role in magnetic exchange mechanisms in this system. The origins of magnetic exchange mechanism between delocalized ligand electrons and spins in organic semiconductors has been of key interest as it underlies many complex optical and transport properties and is investigated in this thesis. The interaction between magnetic ions in organic magnetic semiconductors is quite challenging to interpret due to competing exchange mechanisms present in crystalline thin films. Better understanding of these exchange mechanisms is essential for tuning of magnetic exchange interaction to suit the need of practical magnetic storage and spintronic devices. Optical techniques such as linear dichroism, magnetic circular dichroism and magneto-photoluminescence are used and provided key understanding about the relation between excitons, spin exchange mechanisms and collective magnetic behavior of delocalized electrons in organic semiconductors. An enhancement in the collective magnetization of the crystalline thin films with strong exchange coupling between the delocalized ligand electrons and d-electrons is observed. The electronic states responsible for magnetic exchange are identified utilizing magnetic field and temperature dependent studies. Furthermore, soluble organics allowed engineering of organic analogues to diluted magnetic semiconductors (DMS) by creation of metal/metal-free Pc alloys. Optical studies provided crucial information about delocalization and diffusion lengths in these systems allowing fine tuning of this delocalization length scale and metal-metal distance. The exploration of magnetic behavior in metal/metal-free Pc alloys opens an avenue for tuning magnetic properties through an exchange similar to Ruderman-Kittel-Kasuya Yosida (RKKY) type interaction in organic magnetic semiconductors. 2015-01-01T08:00:00Z text application/pdf http://scholarworks.uvm.edu/graddis/480 http://scholarworks.uvm.edu/cgi/viewcontent.cgi?article=1479&context=graddis Graduate College Dissertations and Theses en ScholarWorks @ UVM magnetism optics organic phthalocyanine semiconductors solution processing Condensed Matter Physics Mechanics of Materials Physical Chemistry
collection NDLTD
language en
format Others
sources NDLTD
topic magnetism
optics
organic
phthalocyanine
semiconductors
solution processing
Condensed Matter Physics
Mechanics of Materials
Physical Chemistry
spellingShingle magnetism
optics
organic
phthalocyanine
semiconductors
solution processing
Condensed Matter Physics
Mechanics of Materials
Physical Chemistry
Rawat, Naveen
Exchange Mechanisms in Macroscopic Ordered Organic Magnetic Semiconductors
description Small molecule organic semiconductors such as phthalocyanines and their derivatives represent a very interesting alternative to inorganic semiconductor materials for the development of flexible electronic devices such as organic thin field effect transistors, organic Light Emitting Diodes and photo-voltaic cells. Phthalocyanine molecules can easily accommodate a variety of metal atoms as well in the central core of the molecule, resulting in wide range of magnetic properties. Exploration of optical properties of organic crystalline semiconductors thin films is challenging due to sub-micron grain sizes and the presence of numerous structural defects, disorder and grain boundaries. However, this can be overcome by fabricating macroscopically ordered semiconductor films by solution processing. Presence of fewer grain boundaries and defects while modifying the pi orbital overlap by controlling the molecular stacking by forming macroscopic long range ordered grains, was essential in understanding the delocalization and diffusion length and its role in magnetic exchange mechanisms in this system. The origins of magnetic exchange mechanism between delocalized ligand electrons and spins in organic semiconductors has been of key interest as it underlies many complex optical and transport properties and is investigated in this thesis. The interaction between magnetic ions in organic magnetic semiconductors is quite challenging to interpret due to competing exchange mechanisms present in crystalline thin films. Better understanding of these exchange mechanisms is essential for tuning of magnetic exchange interaction to suit the need of practical magnetic storage and spintronic devices. Optical techniques such as linear dichroism, magnetic circular dichroism and magneto-photoluminescence are used and provided key understanding about the relation between excitons, spin exchange mechanisms and collective magnetic behavior of delocalized electrons in organic semiconductors. An enhancement in the collective magnetization of the crystalline thin films with strong exchange coupling between the delocalized ligand electrons and d-electrons is observed. The electronic states responsible for magnetic exchange are identified utilizing magnetic field and temperature dependent studies. Furthermore, soluble organics allowed engineering of organic analogues to diluted magnetic semiconductors (DMS) by creation of metal/metal-free Pc alloys. Optical studies provided crucial information about delocalization and diffusion lengths in these systems allowing fine tuning of this delocalization length scale and metal-metal distance. The exploration of magnetic behavior in metal/metal-free Pc alloys opens an avenue for tuning magnetic properties through an exchange similar to Ruderman-Kittel-Kasuya Yosida (RKKY) type interaction in organic magnetic semiconductors.
author Rawat, Naveen
author_facet Rawat, Naveen
author_sort Rawat, Naveen
title Exchange Mechanisms in Macroscopic Ordered Organic Magnetic Semiconductors
title_short Exchange Mechanisms in Macroscopic Ordered Organic Magnetic Semiconductors
title_full Exchange Mechanisms in Macroscopic Ordered Organic Magnetic Semiconductors
title_fullStr Exchange Mechanisms in Macroscopic Ordered Organic Magnetic Semiconductors
title_full_unstemmed Exchange Mechanisms in Macroscopic Ordered Organic Magnetic Semiconductors
title_sort exchange mechanisms in macroscopic ordered organic magnetic semiconductors
publisher ScholarWorks @ UVM
publishDate 2015
url http://scholarworks.uvm.edu/graddis/480
http://scholarworks.uvm.edu/cgi/viewcontent.cgi?article=1479&context=graddis
work_keys_str_mv AT rawatnaveen exchangemechanismsinmacroscopicorderedorganicmagneticsemiconductors
_version_ 1718433336006803456