Mechanisms and salt effects in photoredox and quenching process involving cobalt (III) complexes

The novel complexes [special characters omitted] and [special characters omitted] were prepared and characterized. Photoredox quantum yields for the formation of [special characters omitted] from the above compounds were measured on irradiation at 360 nm to be 0.065, 0.082, 0.0088 and 0.0040 resp...

Full description

Bibliographic Details
Main Author: Cai, Lezhen
Other Authors: Kirk, Alexander D.
Format: Others
Language:English
en
Published: 2018
Subjects:
Online Access:https://dspace.library.uvic.ca//handle/1828/9694
id ndltd-uvic.ca-oai-dspace.library.uvic.ca-1828-9694
record_format oai_dc
spelling ndltd-uvic.ca-oai-dspace.library.uvic.ca-1828-96942018-07-14T17:25:13Z Mechanisms and salt effects in photoredox and quenching process involving cobalt (III) complexes Cai, Lezhen Kirk, Alexander D. Cobalt compounds Synthesis Complex compounds The novel complexes [special characters omitted] and [special characters omitted] were prepared and characterized. Photoredox quantum yields for the formation of [special characters omitted] from the above compounds were measured on irradiation at 360 nm to be 0.065, 0.082, 0.0088 and 0.0040 respectively. With added thiocyanate a significant increase in ΦCo2+ occurred. This can be modeled in two ways; (i) scavenging of thiocyanate radical from an initial caged radical pair giving 6-25 ps estimates for the lifetime of the latter species; (ii) photolysis of a thiocyanate/complex ion pair, giving formation constants of 0.19, 0.09, 0.08 and 0.05 for the complexes [special characters omitted] and [special characters omitted] respectively. Subnanosecond laser flash photolysis studies showed evidence for the formation of [special characters omitted]. The effects of added electrolytes and of viscosity on the formation and decay of [special characters omitted] were also investigated. To help to distinguish between the above two mechanisms, the zero-charged novel complex [special characters omitted] (tacn = 1,4,7-triazacyclononane) was synthesized and characterized. It is thermally stable in aqueous/DMSO solution, but on irradiation at 360 nm undergoes parallel photosubstitution to form DMSO and aqua-substituted products with an overall quantum yield of 0.012. The product yields increase linearly with added thiocyanate. For a 1 M thiocyanate solution, the quantum yield for disappearance of the starting complex rose to 0.022 and a small redox yield of 0.0008 was found. Under these same conditions, ns laser flash photolysis at 355 nm revealed a transient absorption owing to [special characters omitted], which was produced with a quantum yield of 0.036. These results are interpreted in terms of scavenging of radical pair species by thiocyanate ion followed by back electron transfer to give a photosubstituted product, and a radical pair quantum yield of 0.29 and lifetime of 12 ps was derived. The emission of [special characters omitted] (where pop = μ-pyrophosphite-P,P’) can be quenched by the complexes [special characters omitted] (where X = [special characters omitted]) only in the presence of electrolytes. The salt effects have been studied using the salts MCl, M'Cl2, or [special characters omitted] (where M, M’ and R represent alkali, alkaline earth metals, and alkyl respectively, with n = 0-3), and [special characters omitted]. For 0.5 M cation concentration, second-order quenching rate constants kq lie in the range [special characters omitted]. For the different quencher complexes used, kq decreases in the order [special characters omitted]. The oxidative quenching products [special characters omitted] are observed, and their quantum yields are 0.083 and 0.027 respectively for the reaction of [special characters omitted] with [special characters omitted] and [special characters omitted] in 0.5 M KCl / pH2 solution. The quenching occurred by atom transfer (dominant) and electron transfer (minor) for quencher [special characters omitted] or [special characters omitted], while only electron transfer was observed for [special characters omitted] and [special characters omitted] quenchers. The quenching efficiency of the cobalt complexes increases with electrolyte concentration and specific cation effects are observed in the kq with the following trends Li+ < Na+ < K+ < Cs+: Mg2+ < Ca2+ < Sr2+ < Ba2+; NH4+ < MeNH3+ < Me2NH2+ < Me3NH+: Et3NH+ < Et2NH2+ < EtNH3+: n-PrNH3+ < EtNH3+ < MeNH3+. Graduate 2018-07-13T18:21:23Z 2018-07-13T18:21:23Z 1996 2018-07-13 Thesis https://dspace.library.uvic.ca//handle/1828/9694 English en Available to the World Wide Web application/pdf
collection NDLTD
language English
en
format Others
sources NDLTD
topic Cobalt compounds
Synthesis
Complex compounds
spellingShingle Cobalt compounds
Synthesis
Complex compounds
Cai, Lezhen
Mechanisms and salt effects in photoredox and quenching process involving cobalt (III) complexes
description The novel complexes [special characters omitted] and [special characters omitted] were prepared and characterized. Photoredox quantum yields for the formation of [special characters omitted] from the above compounds were measured on irradiation at 360 nm to be 0.065, 0.082, 0.0088 and 0.0040 respectively. With added thiocyanate a significant increase in ΦCo2+ occurred. This can be modeled in two ways; (i) scavenging of thiocyanate radical from an initial caged radical pair giving 6-25 ps estimates for the lifetime of the latter species; (ii) photolysis of a thiocyanate/complex ion pair, giving formation constants of 0.19, 0.09, 0.08 and 0.05 for the complexes [special characters omitted] and [special characters omitted] respectively. Subnanosecond laser flash photolysis studies showed evidence for the formation of [special characters omitted]. The effects of added electrolytes and of viscosity on the formation and decay of [special characters omitted] were also investigated. To help to distinguish between the above two mechanisms, the zero-charged novel complex [special characters omitted] (tacn = 1,4,7-triazacyclononane) was synthesized and characterized. It is thermally stable in aqueous/DMSO solution, but on irradiation at 360 nm undergoes parallel photosubstitution to form DMSO and aqua-substituted products with an overall quantum yield of 0.012. The product yields increase linearly with added thiocyanate. For a 1 M thiocyanate solution, the quantum yield for disappearance of the starting complex rose to 0.022 and a small redox yield of 0.0008 was found. Under these same conditions, ns laser flash photolysis at 355 nm revealed a transient absorption owing to [special characters omitted], which was produced with a quantum yield of 0.036. These results are interpreted in terms of scavenging of radical pair species by thiocyanate ion followed by back electron transfer to give a photosubstituted product, and a radical pair quantum yield of 0.29 and lifetime of 12 ps was derived. The emission of [special characters omitted] (where pop = μ-pyrophosphite-P,P’) can be quenched by the complexes [special characters omitted] (where X = [special characters omitted]) only in the presence of electrolytes. The salt effects have been studied using the salts MCl, M'Cl2, or [special characters omitted] (where M, M’ and R represent alkali, alkaline earth metals, and alkyl respectively, with n = 0-3), and [special characters omitted]. For 0.5 M cation concentration, second-order quenching rate constants kq lie in the range [special characters omitted]. For the different quencher complexes used, kq decreases in the order [special characters omitted]. The oxidative quenching products [special characters omitted] are observed, and their quantum yields are 0.083 and 0.027 respectively for the reaction of [special characters omitted] with [special characters omitted] and [special characters omitted] in 0.5 M KCl / pH2 solution. The quenching occurred by atom transfer (dominant) and electron transfer (minor) for quencher [special characters omitted] or [special characters omitted], while only electron transfer was observed for [special characters omitted] and [special characters omitted] quenchers. The quenching efficiency of the cobalt complexes increases with electrolyte concentration and specific cation effects are observed in the kq with the following trends Li+ < Na+ < K+ < Cs+: Mg2+ < Ca2+ < Sr2+ < Ba2+; NH4+ < MeNH3+ < Me2NH2+ < Me3NH+: Et3NH+ < Et2NH2+ < EtNH3+: n-PrNH3+ < EtNH3+ < MeNH3+. === Graduate
author2 Kirk, Alexander D.
author_facet Kirk, Alexander D.
Cai, Lezhen
author Cai, Lezhen
author_sort Cai, Lezhen
title Mechanisms and salt effects in photoredox and quenching process involving cobalt (III) complexes
title_short Mechanisms and salt effects in photoredox and quenching process involving cobalt (III) complexes
title_full Mechanisms and salt effects in photoredox and quenching process involving cobalt (III) complexes
title_fullStr Mechanisms and salt effects in photoredox and quenching process involving cobalt (III) complexes
title_full_unstemmed Mechanisms and salt effects in photoredox and quenching process involving cobalt (III) complexes
title_sort mechanisms and salt effects in photoredox and quenching process involving cobalt (iii) complexes
publishDate 2018
url https://dspace.library.uvic.ca//handle/1828/9694
work_keys_str_mv AT cailezhen mechanismsandsalteffectsinphotoredoxandquenchingprocessinvolvingcobaltiiicomplexes
_version_ 1718712327578058752