Pairing ΔN2/Ar and N* tracers to observe denitrification in the Canada Basin

Our understanding of the global marine xed nitrogen budget has undergone rapid growth, and as a result there is debate as to whether or not it is balanced. The Arctic plays a disproportionately large role in the sink terms of this budget. This paper works to understand the role of the Canada Bas...

Full description

Bibliographic Details
Main Author: Reeve, Jennifer L.
Other Authors: Hamme, Roberta Claire
Language:English
en
Published: 2017
Subjects:
N*
Online Access:http://hdl.handle.net/1828/7743
id ndltd-uvic.ca-oai-dspace.library.uvic.ca-1828-7743
record_format oai_dc
spelling ndltd-uvic.ca-oai-dspace.library.uvic.ca-1828-77432017-01-20T17:23:45Z Pairing ΔN2/Ar and N* tracers to observe denitrification in the Canada Basin Reeve, Jennifer L. Hamme, Roberta Claire chemical oceanography nitrogen denitrification Arctic Canada Basin N* dissolved gases ΔN2/Ar marine nitrogen cycle Our understanding of the global marine xed nitrogen budget has undergone rapid growth, and as a result there is debate as to whether or not it is balanced. The Arctic plays a disproportionately large role in the sink terms of this budget. This paper works to understand the role of the Canada Basin in the nitrogen cycle. We utilize two tracers of denitri cation: N2/Ar, a dissolved gas tracer, and N*, a nutrient ratio tracer. We aim to quantify the current state of nitrogen cycling in the Canada Basin, and determine its role in the global cycle. Our paired tracer method provides support for shelf denitri cation rates while providing an estimate of ventilation in the same water mass, and provides an estimate for deep benthic denitri cation rates. We observe a disconnect between N2/Ar and N* in the Paci c Upper Halocline Layer (PUHL), wherein the excess N2/Ar we expect from N* is nearly 250% larger than the excess we observe. Our calculations suggest that an approximate steady state between benthic denitri cation and gas exchange on the Chukchi shelf maintains this disconnect. Our measurements of the PUHL support the shelf denitri cation rates reported from direct measurements, and can predict wind speeds required for ventilation within a factor of two. A 1D diffusion model of the old deep waters of the Canada Basin supports benthic denitri cation rates of 0.095-0.15 Tg N y-1. Benthic denitri cation rates determined from the model are on the low end of rates in other deep basins. Our results suggest additional measurements of these tracers in the Canada Basin and surrounding areas would help to constrain both the physical and biological processes controlling nitrogen cycling. Graduate 0425 jen.l.reeve@gmail.com 2017-01-16T16:30:26Z 2017-01-16T16:30:26Z 2016 2017-01-16 Thesis http://hdl.handle.net/1828/7743 English en Available to the World Wide Web http://creativecommons.org/licenses/by-nc-nd/2.5/ca/
collection NDLTD
language English
en
sources NDLTD
topic chemical oceanography
nitrogen
denitrification
Arctic
Canada Basin
N*
dissolved gases
ΔN2/Ar
marine nitrogen cycle
spellingShingle chemical oceanography
nitrogen
denitrification
Arctic
Canada Basin
N*
dissolved gases
ΔN2/Ar
marine nitrogen cycle
Reeve, Jennifer L.
Pairing ΔN2/Ar and N* tracers to observe denitrification in the Canada Basin
description Our understanding of the global marine xed nitrogen budget has undergone rapid growth, and as a result there is debate as to whether or not it is balanced. The Arctic plays a disproportionately large role in the sink terms of this budget. This paper works to understand the role of the Canada Basin in the nitrogen cycle. We utilize two tracers of denitri cation: N2/Ar, a dissolved gas tracer, and N*, a nutrient ratio tracer. We aim to quantify the current state of nitrogen cycling in the Canada Basin, and determine its role in the global cycle. Our paired tracer method provides support for shelf denitri cation rates while providing an estimate of ventilation in the same water mass, and provides an estimate for deep benthic denitri cation rates. We observe a disconnect between N2/Ar and N* in the Paci c Upper Halocline Layer (PUHL), wherein the excess N2/Ar we expect from N* is nearly 250% larger than the excess we observe. Our calculations suggest that an approximate steady state between benthic denitri cation and gas exchange on the Chukchi shelf maintains this disconnect. Our measurements of the PUHL support the shelf denitri cation rates reported from direct measurements, and can predict wind speeds required for ventilation within a factor of two. A 1D diffusion model of the old deep waters of the Canada Basin supports benthic denitri cation rates of 0.095-0.15 Tg N y-1. Benthic denitri cation rates determined from the model are on the low end of rates in other deep basins. Our results suggest additional measurements of these tracers in the Canada Basin and surrounding areas would help to constrain both the physical and biological processes controlling nitrogen cycling. === Graduate === 0425 === jen.l.reeve@gmail.com
author2 Hamme, Roberta Claire
author_facet Hamme, Roberta Claire
Reeve, Jennifer L.
author Reeve, Jennifer L.
author_sort Reeve, Jennifer L.
title Pairing ΔN2/Ar and N* tracers to observe denitrification in the Canada Basin
title_short Pairing ΔN2/Ar and N* tracers to observe denitrification in the Canada Basin
title_full Pairing ΔN2/Ar and N* tracers to observe denitrification in the Canada Basin
title_fullStr Pairing ΔN2/Ar and N* tracers to observe denitrification in the Canada Basin
title_full_unstemmed Pairing ΔN2/Ar and N* tracers to observe denitrification in the Canada Basin
title_sort pairing δn2/ar and n* tracers to observe denitrification in the canada basin
publishDate 2017
url http://hdl.handle.net/1828/7743
work_keys_str_mv AT reevejenniferl pairingdn2arandntracerstoobservedenitrificationinthecanadabasin
_version_ 1718409565421174784