Bio-optical characterization of the Salish Sea, Canada, towards improved chlorophyll algorithms for MODIS and Sentinel-3

The goal of this research was to improve ocean colour chlorophyll a (Chla) retrievals in the coastal Case 2 waters of the Salish Sea by characterizing the main drivers of optical variability and using this information to parameterize empirical algorithms based on an optical classification. This was...

Full description

Bibliographic Details
Main Author: Phillips, Stephen Robert
Other Authors: Costa, Maycira
Language:English
en
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/1828/6977
id ndltd-uvic.ca-oai-dspace.library.uvic.ca-1828-6977
record_format oai_dc
spelling ndltd-uvic.ca-oai-dspace.library.uvic.ca-1828-69772015-12-24T16:55:00Z Bio-optical characterization of the Salish Sea, Canada, towards improved chlorophyll algorithms for MODIS and Sentinel-3 Phillips, Stephen Robert Costa, Maycira optical Salish Sea chlorophyll algorithm MODIS Sentinel-3 ecosystem empirical algorithms remote sensing hierarchical clustering empirical orthogonal function analysis coastal waters The goal of this research was to improve ocean colour chlorophyll a (Chla) retrievals in the coastal Case 2 waters of the Salish Sea by characterizing the main drivers of optical variability and using this information to parameterize empirical algorithms based on an optical classification. This was addressed with three specific objectives: (1) build a comprehensive spatio-temporal data set of in situ optical and biogeochemical parameters, (2) apply a hierarchical clustering analysis to classify above-water remote sensing reflectance (Rrs) and associated bio-optical regimes, (3) optimize and validate class-specific empirical algorithms for improved Chla retrievals. Biogeochemical and optical measurements, acquired at 145 sites, showed considerable variation; Chla (mean=1.64, range: 0.10 – 7.20 µg l-1), total suspended matter (TSM) (3.09, 0.82 – 20.69 mg l-1), and absorption by chromophoric dissolved organic matter (a_cdom (443)) (0.525, 0.007 – 3.072 m-1), thus representing the spatial and temporal variability of the Salish Sea. A comparable range was found in the measured optical properties; particulate scattering (b_p (650)) (1.316, 0.250 – 7.450 m-1), particulate backscattering (b_bp (650)) (0.022, 0.005 – 0.097 m-1), total beam attenuation coefficient (c_t (650)) (1.675, 0.371 – 9.537 m-1), and particulate absorption coefficient (a_p (650)) (0.345, 0.048 – 2.020 m-1). Empirical orthogonal function (EOF) analysis revealed 95% of the Rrs variance was highly correlated to b_p (r = 0.90), b_bp (r = 0.82), and TSM concentration (r = 0.80), suggesting a strong influence from riverine systems in this region. Hierarchical clustering on the normalized Rrs revealed four spectral classes. Class 1 is defined by high overall Rrs magnitudes in the red, indicating more turbid waters, Class 2 showed high Rrs values in the red and well defined fluorescence and absorption features, indicated by a high Chla and TSM presence, Class 3 showed low TSM influence and more defined Chla signatures, and Class 4 is characterized by overall low Rrs values, suggesting more optically clear oceanic waters. Spectral similarities justified a simplification of this classification into two dominant water classes – (1) estuarine class (Classes 1 and 2) and (2) oceanic class (Classes 3 and 4) – representing the dominant influences seen here. In situ Chla and above-water remote sensing reflectance measurements, used to validate and parameterize the OC3M/OC3S3, two-band ratio, FLH and, modified FLH (ModFLH) empirical algorithms, showed a systematic overestimation of low Chla concentrations and underestimation of higher Chla values for all four algorithms when tuned to regional data. FLH and ModFLH algorithms performed best for these data (R2 ~ 0.40; RMSE ~ 0.32). Algorithm accuracy was significantly improved for the class-specific parametrizations with the two-band ratio showing a strong correlation to the Chla concentrations in the estuarine class (R2 ~ 0.71; RMSE ~ 0.33) and the ModFLH algorithm in the oceanic class (R2 ~ 0.70; RMSE ~ 0.26). These results demonstrated the benefit of applying an optical classification as a necessary first step into improving Chla retrievals from remotely sensed data in the contrasted coastal waters of the Salish Sea. With accurate Chla information, the health of the Salish Sea can be viably monitored at spatial and temporal scales suitable for ecosystem management. Graduate 0416 stephen.uvic@gmail.com 2015-12-22T16:27:55Z 2015-12-22T16:27:55Z 2015 2015-12-22 Thesis http://hdl.handle.net/1828/6977 English en Available to the World Wide Web
collection NDLTD
language English
en
sources NDLTD
topic optical
Salish Sea
chlorophyll algorithm
MODIS
Sentinel-3
ecosystem
empirical algorithms
remote sensing
hierarchical clustering
empirical orthogonal function analysis
coastal waters
spellingShingle optical
Salish Sea
chlorophyll algorithm
MODIS
Sentinel-3
ecosystem
empirical algorithms
remote sensing
hierarchical clustering
empirical orthogonal function analysis
coastal waters
Phillips, Stephen Robert
Bio-optical characterization of the Salish Sea, Canada, towards improved chlorophyll algorithms for MODIS and Sentinel-3
description The goal of this research was to improve ocean colour chlorophyll a (Chla) retrievals in the coastal Case 2 waters of the Salish Sea by characterizing the main drivers of optical variability and using this information to parameterize empirical algorithms based on an optical classification. This was addressed with three specific objectives: (1) build a comprehensive spatio-temporal data set of in situ optical and biogeochemical parameters, (2) apply a hierarchical clustering analysis to classify above-water remote sensing reflectance (Rrs) and associated bio-optical regimes, (3) optimize and validate class-specific empirical algorithms for improved Chla retrievals. Biogeochemical and optical measurements, acquired at 145 sites, showed considerable variation; Chla (mean=1.64, range: 0.10 – 7.20 µg l-1), total suspended matter (TSM) (3.09, 0.82 – 20.69 mg l-1), and absorption by chromophoric dissolved organic matter (a_cdom (443)) (0.525, 0.007 – 3.072 m-1), thus representing the spatial and temporal variability of the Salish Sea. A comparable range was found in the measured optical properties; particulate scattering (b_p (650)) (1.316, 0.250 – 7.450 m-1), particulate backscattering (b_bp (650)) (0.022, 0.005 – 0.097 m-1), total beam attenuation coefficient (c_t (650)) (1.675, 0.371 – 9.537 m-1), and particulate absorption coefficient (a_p (650)) (0.345, 0.048 – 2.020 m-1). Empirical orthogonal function (EOF) analysis revealed 95% of the Rrs variance was highly correlated to b_p (r = 0.90), b_bp (r = 0.82), and TSM concentration (r = 0.80), suggesting a strong influence from riverine systems in this region. Hierarchical clustering on the normalized Rrs revealed four spectral classes. Class 1 is defined by high overall Rrs magnitudes in the red, indicating more turbid waters, Class 2 showed high Rrs values in the red and well defined fluorescence and absorption features, indicated by a high Chla and TSM presence, Class 3 showed low TSM influence and more defined Chla signatures, and Class 4 is characterized by overall low Rrs values, suggesting more optically clear oceanic waters. Spectral similarities justified a simplification of this classification into two dominant water classes – (1) estuarine class (Classes 1 and 2) and (2) oceanic class (Classes 3 and 4) – representing the dominant influences seen here. In situ Chla and above-water remote sensing reflectance measurements, used to validate and parameterize the OC3M/OC3S3, two-band ratio, FLH and, modified FLH (ModFLH) empirical algorithms, showed a systematic overestimation of low Chla concentrations and underestimation of higher Chla values for all four algorithms when tuned to regional data. FLH and ModFLH algorithms performed best for these data (R2 ~ 0.40; RMSE ~ 0.32). Algorithm accuracy was significantly improved for the class-specific parametrizations with the two-band ratio showing a strong correlation to the Chla concentrations in the estuarine class (R2 ~ 0.71; RMSE ~ 0.33) and the ModFLH algorithm in the oceanic class (R2 ~ 0.70; RMSE ~ 0.26). These results demonstrated the benefit of applying an optical classification as a necessary first step into improving Chla retrievals from remotely sensed data in the contrasted coastal waters of the Salish Sea. With accurate Chla information, the health of the Salish Sea can be viably monitored at spatial and temporal scales suitable for ecosystem management. === Graduate === 0416 === stephen.uvic@gmail.com
author2 Costa, Maycira
author_facet Costa, Maycira
Phillips, Stephen Robert
author Phillips, Stephen Robert
author_sort Phillips, Stephen Robert
title Bio-optical characterization of the Salish Sea, Canada, towards improved chlorophyll algorithms for MODIS and Sentinel-3
title_short Bio-optical characterization of the Salish Sea, Canada, towards improved chlorophyll algorithms for MODIS and Sentinel-3
title_full Bio-optical characterization of the Salish Sea, Canada, towards improved chlorophyll algorithms for MODIS and Sentinel-3
title_fullStr Bio-optical characterization of the Salish Sea, Canada, towards improved chlorophyll algorithms for MODIS and Sentinel-3
title_full_unstemmed Bio-optical characterization of the Salish Sea, Canada, towards improved chlorophyll algorithms for MODIS and Sentinel-3
title_sort bio-optical characterization of the salish sea, canada, towards improved chlorophyll algorithms for modis and sentinel-3
publishDate 2015
url http://hdl.handle.net/1828/6977
work_keys_str_mv AT phillipsstephenrobert bioopticalcharacterizationofthesalishseacanadatowardsimprovedchlorophyllalgorithmsformodisandsentinel3
_version_ 1718156914199625728