FARHAD: a Fault-Tolerant Power-Aware Hybrid Adder for High-Performance Processor

This thesis introduces an alternative Fault-Tolerant Power-Aware Hybrid Adder (or simply FARHAD) for high-performance processors. FARHAD, similar to earlier studies, relies on performing add operations twice to detect errors. Unlike previous studies, FARHAD uses an aggressive adder to produce the in...

Full description

Bibliographic Details
Main Author: Hajkazemi, Mohammad Hossein
Other Authors: Baniasadi, Amirali
Language:English
en
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/1828/4802
Description
Summary:This thesis introduces an alternative Fault-Tolerant Power-Aware Hybrid Adder (or simply FARHAD) for high-performance processors. FARHAD, similar to earlier studies, relies on performing add operations twice to detect errors. Unlike previous studies, FARHAD uses an aggressive adder to produce the initial outcome and a low-power adder to generate the second outcome, referred to as the checker. FARHAD uses checkpoints, a feature already available to high-performance processors, to recover from errors. FARHAD achieves the high energy-efficiency of time-redundant solutions and the high performance of resource-redundant adders. We evaluate FARHAD from power and performance points of view using a subset of SPEC’2K benchmarks. Our evaluations show that FARHAD outperforms an alternative time-redundant solution by 20%. FARHAD reduces the power dissipation of an alternative resource-redundant adder by 40% while maintaining performance. === Graduate === 0544