Balancing compressed sequences

The performance of communication and storage systems can be improved if the data being sent or stored has certain patterns and structure. In particular, some benefit if the frequency of the symbols is balanced. This includes magnetic and optical data storage devices, as well as future holographic...

Full description

Bibliographic Details
Main Author: Pourtavakoli, Saamaan
Other Authors: Gulliver, T. Aaron
Language:English
en
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/1828/3775
Description
Summary:The performance of communication and storage systems can be improved if the data being sent or stored has certain patterns and structure. In particular, some benefit if the frequency of the symbols is balanced. This includes magnetic and optical data storage devices, as well as future holographic storage systems. Significant research has been done to develop techniques and algorithms to adapt the data (in a reversible manner) to these systems. The goal has been to restructure the data to improve performance while keeping the complexity as low as possible. In this thesis, we consider balancing binary sequences and present its application in holographic storage systems. An overview is given of different approaches, as well as a survey of previous balancing methods. We show that common compression algorithms can be used for this purpose both alone and combined with other balancing algorithms. Simplified models are analyzed using information theory to determine the extent of the compression in this context. Simulation results using standard data are presented as well as theoretical analysis for the performance of the combination of compression with other balancing algorithms. === Graduate