Biomagnification and fate of persistent organic pollutants (POPs) in marine mammal food webs in the Northeastern Pacific Ocean

Elevated polychlorinated biphenyl (PCB) concentrations have been detected in marine mammals inhabiting the Strait of Georgia, British Columbia (Canada) and Puget Sound, Washington State (USA). This raises concerns about adverse health effects and underscores the importance of documenting source, tr...

Full description

Bibliographic Details
Main Author: Cullon, Donna Lynn
Other Authors: Whiticar, Michael J.
Language:English
en
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/1828/3008
Description
Summary:Elevated polychlorinated biphenyl (PCB) concentrations have been detected in marine mammals inhabiting the Strait of Georgia, British Columbia (Canada) and Puget Sound, Washington State (USA). This raises concerns about adverse health effects and underscores the importance of documenting source, transport, and fate of contaminants. This marine mammal-oriented study- (1) examines dietary exposure to complex mixtures of persistent organic pollutants (POPs); (2) characterizes POP accumulations using congener-specific contaminant analyses, stable isotope ratios, and multivariate statistical methods; and (3) explores some of the influencing factors for POP bioaccumulation in marine mammals. A first application of a food basket approach to assessing real-world dietary exposure to mixtures of chemicals in marine mammals has revealed Puget Sound as a regional “hotspot” for PCB contamination. The consistency between PCB concentrations in Puget Sound and the Strait of Georgia harbour seals (Phoca vitulina) and their food baskets validates the use of this method as a basis for exploring dietary exposure, metabolism, biomagnification, and health risks in marine mammals. Concentration rankings of POPs and estimated daily intakes based on our food baskets suggests that both legacy (e.g., PCB, dichlorodiphenyltrichloroethane [DDT]) and new (polybrominated diphenyl ethers [PBDEs]) POPs may pose potential health risks to seals. Accumulations of PCBs in the Strait of Georgia seal food web demonstrate the bioaccumulative nature and persistence of PCBs. Correlations of PCB concentrations with physicochemical properties and trophic level revealed the important role that metabolism plays in biomagnification in seals, alongside trophic level and log Kow. We estimate a PCB load of 77 kg within the Strait of Georgia biomass, with the largest proportion (36 %) detected in marine mammals. Dietary exposure of POPs to resident killer whales (Orcinus orca) was assessed by measuring POPs in four stocks of chinook salmon (Oncorhynchus tshawytscha), their primary prey. Differences in POP concentrations between chinook smolts and returning adults suggest that the majority of POPs are acquired at sea during the major growth period in their life cycle. Higher POP concentrations and low lipid content were observed among the more southerly stocks suggesting a migration-associated metabolism and loss of lighter congeners, thereby exposing southern residents to more highly contaminated chinook salmon. Consumption on a lipid-weight basis, (higher consumption on a wet weight basis), as well as consuming prey from a more contaminated region, likely increases killer whale exposure to POPs, offering an explanation for higher contaminant burdens in southern residents. While previous research has examined species inhabiting different trophic levels or food chains in other regions, this study has provided an assessment of POP dietary exposure, biomagnification, and influencing factors on trophic accumulations in a North-eastern Pacific marine mammal food web. These results have provided further insight into the influence of such factors as age, sex, lipid content, diet, migration-related metabolism, physicochemical properties (degree of chlorination, log Kow), and chemical structure on POP accumulation in marine mammals. We have identified the largely unregulated PBDEs as posing potential health risks to marine mammals and offered a means to update existing tissue residue guidelines for the protection of wildlife.