From reclamation to restoration: native grass species for revegetation in northeast British Columbia

Grasses are widely used in revegetation to control erosion, build soil and maintain habitat. In northeast British Columbia, non-native grass species are commonly seeded to reclaim industrially disturbed sites. Widespread concern about degradation of biodiversity and key ecological processes has le...

Full description

Bibliographic Details
Main Author: Huff, Valerie
Other Authors: Hebda, Richard Joseph
Language:English
en
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/1828/2026
id ndltd-uvic.ca-oai-dspace.library.uvic.ca-1828-2026
record_format oai_dc
collection NDLTD
language English
en
sources NDLTD
topic grasses
northeast BC
functional traits
Specific Leaf Area
native species
Calamagrostis canadensis
Leymus innovatus
Elymus trachycaulus
Poa palustris
Agrostis scabra
oil and gas well site
nonmetric multidimensional scaling
UVic Subject Index::Sciences and Engineering::Earth and Ocean Sciences::Environmental sciences
spellingShingle grasses
northeast BC
functional traits
Specific Leaf Area
native species
Calamagrostis canadensis
Leymus innovatus
Elymus trachycaulus
Poa palustris
Agrostis scabra
oil and gas well site
nonmetric multidimensional scaling
UVic Subject Index::Sciences and Engineering::Earth and Ocean Sciences::Environmental sciences
Huff, Valerie
From reclamation to restoration: native grass species for revegetation in northeast British Columbia
description Grasses are widely used in revegetation to control erosion, build soil and maintain habitat. In northeast British Columbia, non-native grass species are commonly seeded to reclaim industrially disturbed sites. Widespread concern about degradation of biodiversity and key ecological processes has led to increasing value placed on native species and management practices leading to a more resilient landscape. I undertook this study to fill the restoration knowledge gap relating to native grasses in northeast BC. I did an extensive inventory of grasses on 217 sites in 2007, 2008 and 2009. Functional traits were measured in the field and in a greenhouse growth experiment. I found ninety-nine grass species occuring in the region, 70% of which are native. The number, proportion and extent of non-native grasses are increasing and four of these – Poa pratensis, Festuca rubra, Bromus inermis, and Phleum pratense represented almost a quarter of all occurrences. Several native species were common throughout the region: Calamagrostis canadensis, Leymus innovatus, Elymus trachycaulus, Poa palustris and Agrostis scabra. Other native species, including Festuca altaica, Koeleria macrantha, Pascopyrum smithii, and Schizachne purpurascens, strongly favoured intact habitats. Elevation, soil moisture regime, proportion of bare ground, and land use were significant factors related to local grass species composition and abundance. Agrostis scabra, Alopecurus aequalis, Beckmannia syzigachne, Bromus ciliatus, Cinna latifolia, Deschampsia cespitosa, Elymus alaskanus, Elymus trachycaulus, Festuca saximontana and Hordeum jubatum grew commonly on severely damaged well sites. Field measurements for Specific Leaf Area (SLA) and Leaf Dry Matter Content (LDMC) of 11 species showed an inverse correlation. Bromus ciliatus, Bromus pumpellianus, and Elymus trachycaulus had high SLA/low LDMC linked to rapid growth, whereas Festuca altaica, Deschampsia cespitosa, and Calamagrostis stricta had low SLA/high LDMC linked to slow growth and persistence. In the greenhouse experiment, Poa palustris, Cinna latifolia and Bromus ciliatus produced the most overall biomass and Pascopyrum smithii and Poa palustris produced the greatest aboveground biomass. Calamagrostis stricta, Poa palustris, Elymus glaucus, Leymus innovatus and Pascopyrum smithii exhibited clonal growth. Beckmannia syzigachne, Bromus ciliatus Cinna latifolia produced viable seed during the 135-day experiment. Considering all attributes five native species, Calamagrostis canadensis, Elymus trachycaulus, Poa palustris, Leymus innovatus, and Agrostis scabra are recommended for general restoration use in northeast B.C. Other native species show promise when matched to particular site conditions, including Alopecurus aequalis, Arctagrostis latifolia, Beckmannia syzigachne, Bromus ciliatus, Calamagrostis stricta, Cinna latifolia, Deschampsia cespitosa, Elymus glaucus, Festuca saximontana, Glyceria striata, Hordeum jubatum, Koeleria macrantha, Pascopyrum smithii, Poa alpina, Schizachne purpurascens and Trisetum spicatum. This information will be valuable to land managers interested in moving beyond reclamation to ecological restoration of sites disturbed by oil and gas development. Developing practices that are environmentally sound and socially acceptable requires ongoing botanical inventory. Plant traits may be useful in matching species to site conditions and restoration goals. Policy recommendations include phasing in of requirements to use native seed while restricting the use of agronomic species, promoting natural colonization, and supporting a native seed industry.
author2 Hebda, Richard Joseph
author_facet Hebda, Richard Joseph
Huff, Valerie
author Huff, Valerie
author_sort Huff, Valerie
title From reclamation to restoration: native grass species for revegetation in northeast British Columbia
title_short From reclamation to restoration: native grass species for revegetation in northeast British Columbia
title_full From reclamation to restoration: native grass species for revegetation in northeast British Columbia
title_fullStr From reclamation to restoration: native grass species for revegetation in northeast British Columbia
title_full_unstemmed From reclamation to restoration: native grass species for revegetation in northeast British Columbia
title_sort from reclamation to restoration: native grass species for revegetation in northeast british columbia
publishDate 2010
url http://hdl.handle.net/1828/2026
work_keys_str_mv AT huffvalerie fromreclamationtorestorationnativegrassspeciesforrevegetationinnortheastbritishcolumbia
_version_ 1716729069413859328
spelling ndltd-uvic.ca-oai-dspace.library.uvic.ca-1828-20262015-01-29T16:51:05Z From reclamation to restoration: native grass species for revegetation in northeast British Columbia Huff, Valerie Hebda, Richard Joseph Turner, Nancy J. grasses northeast BC functional traits Specific Leaf Area native species Calamagrostis canadensis Leymus innovatus Elymus trachycaulus Poa palustris Agrostis scabra oil and gas well site nonmetric multidimensional scaling UVic Subject Index::Sciences and Engineering::Earth and Ocean Sciences::Environmental sciences Grasses are widely used in revegetation to control erosion, build soil and maintain habitat. In northeast British Columbia, non-native grass species are commonly seeded to reclaim industrially disturbed sites. Widespread concern about degradation of biodiversity and key ecological processes has led to increasing value placed on native species and management practices leading to a more resilient landscape. I undertook this study to fill the restoration knowledge gap relating to native grasses in northeast BC. I did an extensive inventory of grasses on 217 sites in 2007, 2008 and 2009. Functional traits were measured in the field and in a greenhouse growth experiment. I found ninety-nine grass species occuring in the region, 70% of which are native. The number, proportion and extent of non-native grasses are increasing and four of these – Poa pratensis, Festuca rubra, Bromus inermis, and Phleum pratense represented almost a quarter of all occurrences. Several native species were common throughout the region: Calamagrostis canadensis, Leymus innovatus, Elymus trachycaulus, Poa palustris and Agrostis scabra. Other native species, including Festuca altaica, Koeleria macrantha, Pascopyrum smithii, and Schizachne purpurascens, strongly favoured intact habitats. Elevation, soil moisture regime, proportion of bare ground, and land use were significant factors related to local grass species composition and abundance. Agrostis scabra, Alopecurus aequalis, Beckmannia syzigachne, Bromus ciliatus, Cinna latifolia, Deschampsia cespitosa, Elymus alaskanus, Elymus trachycaulus, Festuca saximontana and Hordeum jubatum grew commonly on severely damaged well sites. Field measurements for Specific Leaf Area (SLA) and Leaf Dry Matter Content (LDMC) of 11 species showed an inverse correlation. Bromus ciliatus, Bromus pumpellianus, and Elymus trachycaulus had high SLA/low LDMC linked to rapid growth, whereas Festuca altaica, Deschampsia cespitosa, and Calamagrostis stricta had low SLA/high LDMC linked to slow growth and persistence. In the greenhouse experiment, Poa palustris, Cinna latifolia and Bromus ciliatus produced the most overall biomass and Pascopyrum smithii and Poa palustris produced the greatest aboveground biomass. Calamagrostis stricta, Poa palustris, Elymus glaucus, Leymus innovatus and Pascopyrum smithii exhibited clonal growth. Beckmannia syzigachne, Bromus ciliatus Cinna latifolia produced viable seed during the 135-day experiment. Considering all attributes five native species, Calamagrostis canadensis, Elymus trachycaulus, Poa palustris, Leymus innovatus, and Agrostis scabra are recommended for general restoration use in northeast B.C. Other native species show promise when matched to particular site conditions, including Alopecurus aequalis, Arctagrostis latifolia, Beckmannia syzigachne, Bromus ciliatus, Calamagrostis stricta, Cinna latifolia, Deschampsia cespitosa, Elymus glaucus, Festuca saximontana, Glyceria striata, Hordeum jubatum, Koeleria macrantha, Pascopyrum smithii, Poa alpina, Schizachne purpurascens and Trisetum spicatum. This information will be valuable to land managers interested in moving beyond reclamation to ecological restoration of sites disturbed by oil and gas development. Developing practices that are environmentally sound and socially acceptable requires ongoing botanical inventory. Plant traits may be useful in matching species to site conditions and restoration goals. Policy recommendations include phasing in of requirements to use native seed while restricting the use of agronomic species, promoting natural colonization, and supporting a native seed industry. 2010-01-04T16:16:03Z 2010-01-04T16:16:03Z 2009 2010-01-04T16:16:03Z Thesis http://hdl.handle.net/1828/2026 English en Available to the World Wide Web