Intimate control for physical modeling synthesis.

Physical modeling synthesis has proven to be a successful method of synthesizing realistic sounds, but providing expressive controls for performance remains a major challenge. This thesis presents a new approach to playing physical models, based on multidimensional signals. Its focus is on the lo...

Full description

Bibliographic Details
Main Author: Jones, Randall Evan
Other Authors: Tzanetakis, George
Language:English
en
Published: 2009
Subjects:
Online Access:http://hdl.handle.net/1828/1378
Description
Summary:Physical modeling synthesis has proven to be a successful method of synthesizing realistic sounds, but providing expressive controls for performance remains a major challenge. This thesis presents a new approach to playing physical models, based on multidimensional signals. Its focus is on the long-term research question, “How can we make a computermediated instrument with control intimacy equal to the most expressive acoustic instruments?” In the material world, the control and sounding properties of an instrument or other object are intimately linked by the object’s construction. Multidimensional signals, used as connections between a gestural controller and a physical model, can in principle provide the same intimacy. This work presents a new, low-cost sensor design capable of generating a 2D force signal, a new implementation of the 2D digital waveguide mesh, and two experimental computer music instruments that combine these components using di erent metaphors. The new instruments are evaluated in terms of intimacy, playability and plausibility. Multidimensional connections between sensors and a physical model are found to facilitate a high degree of control intimacy, and to reproduce as emergent behavior some important phenomena associated with acoustic instruments.