Hypervisor-based cloud anomaly detection using supervised learning techniques

Although cloud network flows are similar to conventional network flows in many ways, there are some major differences in their statistical characteristics. However, due to the lack of adequate public datasets, the proponents of many existing cloud intrusion detection systems (IDS) have relied on the...

Full description

Bibliographic Details
Main Author: Nwamuo, Onyekachi
Other Authors: Traore, Issa
Format: Others
Language:English
en
Published: 2020
Subjects:
Online Access:http://hdl.handle.net/1828/11503
Description
Summary:Although cloud network flows are similar to conventional network flows in many ways, there are some major differences in their statistical characteristics. However, due to the lack of adequate public datasets, the proponents of many existing cloud intrusion detection systems (IDS) have relied on the DARPA dataset which was obtained by simulating a conventional network environment. In the current thesis, we show empirically that the DARPA dataset by failing to meet important statistical characteristics of real-world cloud traffic data centers is inadequate for evaluating cloud IDS. We analyze, as an alternative, a new public dataset collected through cooperation between our lab and a non-profit cloud service provider, which contains benign data and a wide variety of attack data. Furthermore, we present a new hypervisor-based cloud IDS using an instance-oriented feature model and supervised machine learning techniques. We investigate 3 different classifiers: Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM) algorithms. Experimental evaluation on a diversified dataset yields a detection rate of 92.08% and a false-positive rate of 1.49% for the random forest, the best performing of the three classifiers. === Graduate