3-manifolds algorithmically bound 4-manifolds

This thesis presents an algorithm for producing 4–manifold triangulations with boundary an arbitrary orientable, closed, triangulated 3–manifold. The research is an extension of Costantino and Thurston’s work on determining upper bounds on the number of 4–dimensional simplices necessary to construct...

Full description

Bibliographic Details
Main Author: Churchill, Samuel
Other Authors: Mehlenbacher, Alan
Format: Others
Language:English
en
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/1828/11069
Description
Summary:This thesis presents an algorithm for producing 4–manifold triangulations with boundary an arbitrary orientable, closed, triangulated 3–manifold. The research is an extension of Costantino and Thurston’s work on determining upper bounds on the number of 4–dimensional simplices necessary to construct such a triangulation. Our first step in this bordism construction is the geometric partitioning of an initial 3–manifold M using smooth singularity theory. This partition provides handle attachment sites on the 4–manifold Mx[0,1] and the ensuing handle attachments eliminate one of the boundary components of Mx[0,1], yielding a 4-manifold with boundary exactly M. We first present the construction in the smooth case before extending the smooth singularity theory to triangulated 3–manifolds. === Graduate