Summary: | Os espectros vibracionais Raman e infravermelho de compostos de ftalimidas, tais como, N-h-ftalimida, N-d-ftalimida, ftalimida de potássio, N-h-tetracloroftalimida, N-d-tetracloroftalimida, tetra¬cloroftalimida de potássio, N-h-tetrabromoftalimida, N-d-tetrabromoftalimida, tetrabromoftalimida de potássio, N-h-tetraiodoftalimida, N-d-tetraiodoftalimida e tetraiodoftalimida de potássio, foram registrados, respectivamente, na região de frequência de 4000 a 50 cm-1 e de 4000 a 160 cm-1 para amostras policristalinas. As bandas observadas foram atribuídas, tentativamente, considerando-se a estrutura molecular C2v comparando com os espectros vibracionais Raman e infravermelho do anidrido ftálico, anidrido tetracloroftálico, anidrido tetrabromoftálico e anidrido tetraiodoftálico. As moléculas de imidas e anidridos são isoeletrônicas. As análises de coordenadas normais dos anidridos ftálicos e ftalimidas foram realizadas considerando-se um campo de força molecular do tipo de valência generalizado. Os cálculos numéricos foram efetuados usando um conjunto de programas de computação em linguagem FORTRAN IV, para as vibrações normais no plano e fora do plano . As constantes de força definidas foram ajustadas pelos cálculos de quadrados mínimos, para reproduzir as frequências fundamentais observadas nos espectros vibracionais. As distribuições de energia potencial para coordenadas de simetria foram também calculadas para confirmar as atribuições feitas. Com base nas frequências observadas e nas intensidades relativas dos espectros Raman e infravermelho e nos cálculos de constantes de força e de distribuições de energia potencial, foram discutidas as vibrações normais e fundamentais das moléculas de ftalimidas e anidridos ftálicos e a natureza das ligações químicas nos sistemas de O=C-N-C=O e o=c-o-c=o e de anel benzênico. Os deslocamentos das frequências vibracionais e os desdobramentos das bandas observadas das vibrações de estiramento C=O, N-H e N-D foram explicados usando os termos de migração dos elétrons nos sistemas π, ponte de hidrogênio intramolecular e intermolecular, e ressonância de Fermi. Aplicando as regras de seleção vibracional e exclusão mútua Raman-infravermelho para as estruturas moleculares e cristalinas, as bandas observadas foram também discutidas considerando-se as funções potenciais moleculares. === The vibrational Raman and infrared spectra of the compounds of phthalimides, such as N-h-phthalimide, N-d-phthalimide, potassium phthalimide, N-h-tetrachlorophthalimide, N-d-tetrachlorophthalimide, potassium tetrachlorophthalimide, N-h-tetrabromophthalimide, N-d-tetrabromophthalimide, potassium tetrabromophthalimide, N-h-tetraiodophthalimide, N-d-tetraiodophthalimide and potassium tetraiodophthal¬imide, have been measured, respectively, in the frequency region from 4000 to 50 cm-1 and from 4000 to 160 cm-1 , for the polycrystalline samples. The observed bands have been assigned, tentatively, considering a molecular structure C2v and comparing with the vibrational Raman and infrared spectra of phthalic anhydride, tetrachlorophthalic anhydride, tetrabromophthalic anhydride and tetraiodophthalic anhydride. The molecules of imides and anhydrides are isoelectronic. The normal coordinate analyses of phthalic anhydrides and phthalímídes have been carried out consideríng a molecular force field of the general valence type. The numerical calculations have been made usíng a set of computer programs written in FORTRAN IV, to the lnplane and out-of-plane normal vibrations. The defíned force constants have been adjusted by the least squares calculatíons to reproduce the observed fundamental frequencies of the vibrational spectra. The potentíal energy distributions for the symmetry coordinates have also been calculated to confirm the proposed assignments. The normal and fundamental vibrations of the molecules of phthalímides and phthalic anhydrides and the nature of chemícal bond of the O=C-N-C=O and O=C-O-C=O systems and of the benzene ríng have been discussed on the basis of the observed frequencies and relatíve intensities of the. Raman and infrared spectra and of the calculated force constants and potential energy distributions. The vibrational frequency shifts and observed band separations of the C=O, N-H and N-D stretching vibrations have been explained using the terms of π electron migration, intramolecular and intermolecular hydrogem bond and Fermi resonance. Applying the vibrational selection rules and the infraredRaman mutual exclusion rules to the molecular and crystal structures, the observed bands have also been discussed considering the molecular potential functions.
|