Representação de Weierstrass em variedades Riemannianas e Lorentzianas

O Teorema de Representação de Weierstrass clássico, que faz uso da análise complexa para descrever uma superfície mínima imersa no espaço Euclidiano em termos de dados holomorfos, tem sido extremamente útil seja para construir novos exemplos de superfícies mínimas, seja para o estudo das propriedade...

Full description

Bibliographic Details
Main Author: Freire, Emanoel Mateus dos Santos
Other Authors: Onnis, Irene Ignazia
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2018
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30102018-145548/
id ndltd-usp.br-oai-teses.usp.br-tde-30102018-145548
record_format oai_dc
spelling ndltd-usp.br-oai-teses.usp.br-tde-30102018-1455482019-05-09T22:07:59Z Representação de Weierstrass em variedades Riemannianas e Lorentzianas Weierstrass representation in Riemannian and Lorentzian manifolds Freire, Emanoel Mateus dos Santos Lorentzian manifolds Minimal surfaces Representação de Weierstrass Riemannian manifolds Superfícies Mínimas Variedades Lorentzianas Variedades Riemannianas Weierstrass representation O Teorema de Representação de Weierstrass clássico, que faz uso da análise complexa para descrever uma superfície mínima imersa no espaço Euclidiano em termos de dados holomorfos, tem sido extremamente útil seja para construir novos exemplos de superfícies mínimas, seja para o estudo das propriedades destas superfícies. Em [24], usando a equação harmônica, os autores determinam uma fórmula de representação para superfícies mínimas, simplesmente conexas, imersas em uma variedade Riemanniana qualquer. Neste caso, a condição de holomorficidade dos dados de Weierstrass consiste em um sistema de equações diferenciais parciais com coeficientes não constantes. Logo, em geral, é complicado determinar soluções explícitas. No entanto, escolhendo adequadamente o espaço ambiente, tais equações se simplificam e a fórmula pode ser usada para produzir novos exemplos de imersões mínimas conformes. No espaço de Lorentz-Minkowski tridimensional uma fórmula de representação tipo-Weierstrass foi provada por Kobayashi, para o caso das imersões mínimas de tipo espaço (ver [18]), e por Konderak no caso das imersões mínimas de tipo tempo (ver [20]). Na demonstração destas fórmulas se utilizam as ferramentas da análise complexa e paracomplexa, respectivamente. Recentemente, em [22] os resultados de Kobayashi e Konderak foram generalizados para o caso de superfícies mínimas (de tipo espaço e de tipo tempo) imersas em 3-variedades Lorentzianas. Nesta dissertação estudaremos as fórmulas de representação de Weierstrass para superfícies mínimas imersas em variedades Riemannianas e Lorentzianas, que foram obtidas nos artigos [18], [20], [22] e [24]. The classic Weierstrass Representation Theorem, which makes use of complex analysis to describe a minimal surface immersed in the Euclidean space in terms of holomorphic data, has been extremely useful either to construct new examples of minimal surfaces, rather than to study structural properties of these surfaces. In [24], using the standard harmonic equation, the authors determine a representation formula for simply connected immersed minimal surfaces in a Riemannian manifold. In this case, the holomorphicity condition of the Weierstrass data is a system of partial differential equations with nonconstant coefficients. Therefore, in geral, it is very difficult to determine explicit solutions. However, for particular ambient spaces, these equations become simpler and the formula can be used to produce new examples of conformal minimal immersions. In the three-dimensional Lorentz-Minkowski space a Weierstrass-type representation formula was proved by Kobayashi for spacelike minimal immersions (see [18]), and by Konderak for the case of timelike minimal immersions (see [20]). In the demonstration of these formulas are used the tools of complex and paracomplex analysis, respectively. Recently, in [22] the results of Kobayashi and Konderak were generalized to the case of (spacelike and timelike) minimal surfaces immersed in 3-Lorentzian manifolds. In this dissertation, we will study the Weierstrass representation formula for immersed minimal surfaces in Riemannian and Lorentzian manifolds, that was obtained in the articles [18], [20], [22] and [24]. Biblioteca Digitais de Teses e Dissertações da USP Onnis, Irene Ignazia 2018-04-12 Dissertação de Mestrado application/pdf http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30102018-145548/ pt Liberar o conteúdo para acesso público.
collection NDLTD
language pt
format Others
sources NDLTD
topic Lorentzian manifolds
Minimal surfaces
Representação de Weierstrass
Riemannian manifolds
Superfícies Mínimas
Variedades Lorentzianas
Variedades Riemannianas
Weierstrass representation
spellingShingle Lorentzian manifolds
Minimal surfaces
Representação de Weierstrass
Riemannian manifolds
Superfícies Mínimas
Variedades Lorentzianas
Variedades Riemannianas
Weierstrass representation
Freire, Emanoel Mateus dos Santos
Representação de Weierstrass em variedades Riemannianas e Lorentzianas
description O Teorema de Representação de Weierstrass clássico, que faz uso da análise complexa para descrever uma superfície mínima imersa no espaço Euclidiano em termos de dados holomorfos, tem sido extremamente útil seja para construir novos exemplos de superfícies mínimas, seja para o estudo das propriedades destas superfícies. Em [24], usando a equação harmônica, os autores determinam uma fórmula de representação para superfícies mínimas, simplesmente conexas, imersas em uma variedade Riemanniana qualquer. Neste caso, a condição de holomorficidade dos dados de Weierstrass consiste em um sistema de equações diferenciais parciais com coeficientes não constantes. Logo, em geral, é complicado determinar soluções explícitas. No entanto, escolhendo adequadamente o espaço ambiente, tais equações se simplificam e a fórmula pode ser usada para produzir novos exemplos de imersões mínimas conformes. No espaço de Lorentz-Minkowski tridimensional uma fórmula de representação tipo-Weierstrass foi provada por Kobayashi, para o caso das imersões mínimas de tipo espaço (ver [18]), e por Konderak no caso das imersões mínimas de tipo tempo (ver [20]). Na demonstração destas fórmulas se utilizam as ferramentas da análise complexa e paracomplexa, respectivamente. Recentemente, em [22] os resultados de Kobayashi e Konderak foram generalizados para o caso de superfícies mínimas (de tipo espaço e de tipo tempo) imersas em 3-variedades Lorentzianas. Nesta dissertação estudaremos as fórmulas de representação de Weierstrass para superfícies mínimas imersas em variedades Riemannianas e Lorentzianas, que foram obtidas nos artigos [18], [20], [22] e [24]. === The classic Weierstrass Representation Theorem, which makes use of complex analysis to describe a minimal surface immersed in the Euclidean space in terms of holomorphic data, has been extremely useful either to construct new examples of minimal surfaces, rather than to study structural properties of these surfaces. In [24], using the standard harmonic equation, the authors determine a representation formula for simply connected immersed minimal surfaces in a Riemannian manifold. In this case, the holomorphicity condition of the Weierstrass data is a system of partial differential equations with nonconstant coefficients. Therefore, in geral, it is very difficult to determine explicit solutions. However, for particular ambient spaces, these equations become simpler and the formula can be used to produce new examples of conformal minimal immersions. In the three-dimensional Lorentz-Minkowski space a Weierstrass-type representation formula was proved by Kobayashi for spacelike minimal immersions (see [18]), and by Konderak for the case of timelike minimal immersions (see [20]). In the demonstration of these formulas are used the tools of complex and paracomplex analysis, respectively. Recently, in [22] the results of Kobayashi and Konderak were generalized to the case of (spacelike and timelike) minimal surfaces immersed in 3-Lorentzian manifolds. In this dissertation, we will study the Weierstrass representation formula for immersed minimal surfaces in Riemannian and Lorentzian manifolds, that was obtained in the articles [18], [20], [22] and [24].
author2 Onnis, Irene Ignazia
author_facet Onnis, Irene Ignazia
Freire, Emanoel Mateus dos Santos
author Freire, Emanoel Mateus dos Santos
author_sort Freire, Emanoel Mateus dos Santos
title Representação de Weierstrass em variedades Riemannianas e Lorentzianas
title_short Representação de Weierstrass em variedades Riemannianas e Lorentzianas
title_full Representação de Weierstrass em variedades Riemannianas e Lorentzianas
title_fullStr Representação de Weierstrass em variedades Riemannianas e Lorentzianas
title_full_unstemmed Representação de Weierstrass em variedades Riemannianas e Lorentzianas
title_sort representação de weierstrass em variedades riemannianas e lorentzianas
publisher Biblioteca Digitais de Teses e Dissertações da USP
publishDate 2018
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-30102018-145548/
work_keys_str_mv AT freireemanoelmateusdossantos representacaodeweierstrassemvariedadesriemannianaselorentzianas
AT freireemanoelmateusdossantos weierstrassrepresentationinriemannianandlorentzianmanifolds
_version_ 1719078088709505024