Estudo teórico do radical CAs e da adsorção de As e AsH3 na superfície C(100) do diamante

A química computacional, uma importante e crescente área da química teórica, vem sendo empregada com grande sucesso no entendimento dos mais variados tipos de sistemas químicos. Focando na interação entre arsênio e carbono, o presente trabalho apresenta duas situações distintas: uma que engloba o me...

Full description

Bibliographic Details
Main Author: Batista, Ana Paula de Lima
Other Authors: Ornellas, Fernando Rei
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2014
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/46/46136/tde-29042014-153052/
Description
Summary:A química computacional, uma importante e crescente área da química teórica, vem sendo empregada com grande sucesso no entendimento dos mais variados tipos de sistemas químicos. Focando na interação entre arsênio e carbono, o presente trabalho apresenta duas situações distintas: uma que engloba o menor sistema formado entre eles, o radical CAs, e outra que traz a interação da superfície C(100) do diamante com o átomo de arsênio e a sua forma hidreto, ou seja, os sistemas C(100)+As e C(100)+AsH3. No primeiro caso, um tratamento de alto nível de correlação eletrônica (MRCI/aV5Z) é feito, permitindo se obter as propriedades espectroscópicas associados aos estados eletrônicos de mais baixa energia do radical. No estudo envolvendo a superfície C(100), dois modelos distintos de aglomerados foram adotados na representação do sólido: o modelo QM (C15H16) e o QM/MM (C292H120). A aproximação híbrida é baseada no método SIMOMM que é indicado para o tratamento de superfícies sólidas. Os dados estruturais e energéticos dos pontos de mínimos identificados nas duas diferentes aproximações foram contrastados, sugerindo que o modelo de aglomerado QM/MM é capaz de representar melhor o problema real. === Computational chemistry, a growing and important area in theoretical chemistry, has been successfully employed to understand many types of chemical systems. Focusing on the interaction between carbon and arsenic, this work presents two distinct situations: one is the study of the smallest system formed between them, the CAs radical, and another one where the diamond C(100) surface interacts with an arsenic atom and its hydride form, i.e. , the C(100)+As and C(100)+AsH3 systems. In the first case, a high-level (MRCI/aV5Z ) calculation was performed, allowing us to obtain the spectroscopic properties of the low-lying electronic states. In the study of the diamond C(100) surface, two different cluster models were used to represent the solid: one QM (C15H16) and the other QM/MM (C292H120). The hybrid approach is based on the SIMOMM method, that is recommended for dealing with solid surfaces. Energetic and structural aspects associated with the minimum energy species were contrasted for both a pproaches, suggesting that the QM/MM model is able to better represent the real problem.