Desenvolvimento da análise de vizinhança em mapas conceituais a partir do uso de um conceito obrigatório

Os mapas conceituais (MCs) são úteis para representar o conhecimento dos alunos e promover a aprendizagem significativa. A análise detalhada de mapas conceituais pode revelar informações latentes que não são percebidas a partir da mera leitura do seu conjunto de proposições. O presente trabalho tem...

Full description

Bibliographic Details
Main Author: Cicuto, Camila Aparecida Tolentino
Other Authors: Correia, Paulo Rogério Miranda
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2011
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/81/81132/tde-28082012-092401/
Description
Summary:Os mapas conceituais (MCs) são úteis para representar o conhecimento dos alunos e promover a aprendizagem significativa. A análise detalhada de mapas conceituais pode revelar informações latentes que não são percebidas a partir da mera leitura do seu conjunto de proposições. O presente trabalho tem como objetivo propor a análise de vizinhança (AViz) como uma forma inovadora de analisar os MCs obtidos em sala de aula. A seleção de um conceito obrigatório (CO) permite verificar como os alunos o relaciona com outros conceitos, que são denominados conceitos vizinhos (CVs). MCs (n=69) sobre as mudanças climáticas formam o primeiro conjunto de dados empíricos que ratifica o potencial da AViz. O CO selecionado foi dispersão, a fim de analisar se os alunos conseguem relacioná-lo com o caráter global desse problema ambiental. Os padrões identificados a partir da AViz sugerem que, apesar de serem submetidos a uma mesma sequência didática, nem todos os alunos conseguiram utilizar o CO de forma adequada. Isso pode ser explicado a partir da Teoria da Aprendizagem Significativa de David Ausubel, que destaca o papel fundamental dos conhecimentos prévios no processo de assimilação de novas informações. === Concept maps (CMs) are useful to represent students\' knowledge and to promote meaningful learning. The deep analysis of concept maps may reveal latent information that is not perceived from the simple reading of its propositional network. This work proposes the Neighborhood Analysis (NeAn) as an innovative way to analyze the CMs obtained in classrooms. The selection of a compulsory concept (CC) allows teachers to evaluate how the students relate it to other concepts, named neighbors (NCs). CMs (n=69) on climate change are the first set of empirical data that confirms the potential of NeAn. Dispersion was selected as CC in order to check whether students can relate it with the global perspective of this environmental problem. The patterns found from the NeAn suggest that, despite being exposed to the same didactic activities, some students could not use the CC properly. This may be explained from David Ausubel\'s learning theory, which stresses the critical role of prior knowledge in the assimilation process of new information.