Aquisição de Conhecimento Utilizando Aprendizado de Máquina Relacional

Aprendizado de Máquina AM é uma área de Inteligência Artificial IA que estuda métodos computacionais para adquirir novos conhecimentos bem como meios de organizar o conhecimento já existente. Para isso, são necessárias linguagens de descrição de objetos e de conceitos aprendidos. Elas podem ser...

Full description

Bibliographic Details
Main Author: Caulkins, Chandler Wellington
Other Authors: Monard, Maria Carolina
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2000
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26022018-145221/
id ndltd-usp.br-oai-teses.usp.br-tde-26022018-145221
record_format oai_dc
spelling ndltd-usp.br-oai-teses.usp.br-tde-26022018-1452212019-05-09T21:26:22Z Aquisição de Conhecimento Utilizando Aprendizado de Máquina Relacional Not available Caulkins, Chandler Wellington Não disponível Not available Aprendizado de Máquina AM é uma área de Inteligência Artificial IA que estuda métodos computacionais para adquirir novos conhecimentos bem como meios de organizar o conhecimento já existente. Para isso, são necessárias linguagens de descrição de objetos e de conceitos aprendidos. Elas podem ser divididas em dois tipos: baseadas em atributos, ou proposicionais, e relacionais. Sistemas de AM proposicional têm sido aplicados com relativo sucesso, utilizando dados no formato atributo-valor. No entanto, são incapazes de aprender relações em função da linguagem que utilizam. Programação Lógica Indutiva PLI é uma abordagem recente dentro de AM que faz uso de uma linguagem de descrição relacional baseada em lógica de primeira ordem, de modo que consegue aprender relações entre os objetos. Todo problema que pode ser resolvido por um sistema de aprendizado proposicional pode, em princípio, ser resolvido por um sistema de aprendizado relacional, desde que os fiados estejam devidamente formatados. Uma série de ferramentas foi por nós implementada para converter os dados do formato atributo-valor para o formato relacional apropriado de dois sistemas de PLI, FOIL (Quinlan, 1990) e PROGOL (Muggleton, 1995). A partir dessas representações, tornou-se possível analisar o comportamento de cada um deles em bases de dados naturais com características diferentes. Como estudo de caso do mundo real, utiliza-se uma base de dados disponibilizada pelo Programa de Melhoramento Genético da Raça Nelore PMGRN da Universidade de São Paulo em Ribeirão Preto (Làbo et al., 1999). Utilizando os sistemas PLI, adquire-se um conhecimento sobre essa base de dados de gado. Para tanto segue-se uma metodologia baseada no processo KDD (Knowledge Discovery in Databases) descrito em (Fayyad, 1996). Machine Learning ML is an arca in Artificial Intelligence AI which studies computational methods for acquiring new knowledge along with ways to organize existing knowledge. To do this, de,scriptive languages are necessary for the objects being studied as well as the concepts that are learned. The languages can be divided into two type,s: languages based on attributes, or propositional languages, and relational languages. Propositional ML systems have been applied to several problemas with quite a bit of succe,ss, by using data in an attribute-value format. Yet they canriot learn relationships because of the propositional language they use. Inductive Logic Programming ILP is a recent ML approach which uses a relational description language based on first-order logic, so that it is able to learn relationships between objects. Any problem that caia be solved using propositional learning can, theoretically, be solved using a relational learning system, once the data has been put in the correct format. A series of tools have been implemented by us to convert data in attribute-value format to appropriate relational formats for two ILP systems, FOIL (Quinlan, 1990) and PROGOL (Muggleton, 1995). Using these representations, it is possible to analyze the behavior of each one in natural databases with different characteristics. A database made available by the Program for the Genetic Improvement of the Nelore Breed PMGRN at the University of São Paulo in Ribeirão Preto is used as a realworld case study. Some knowledge is acquired about the cattle database, by using an ILP system and the results are discussed. A knowledge acquisition process based on the Knowledge Discovery in Database,s KDD process described in (Fayyad, 1996) is used. Biblioteca Digitais de Teses e Dissertações da USP Monard, Maria Carolina 2000-08-17 Dissertação de Mestrado application/pdf http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26022018-145221/ pt Liberar o conteúdo para acesso público.
collection NDLTD
language pt
format Others
sources NDLTD
topic Não disponível
Not available
spellingShingle Não disponível
Not available
Caulkins, Chandler Wellington
Aquisição de Conhecimento Utilizando Aprendizado de Máquina Relacional
description Aprendizado de Máquina AM é uma área de Inteligência Artificial IA que estuda métodos computacionais para adquirir novos conhecimentos bem como meios de organizar o conhecimento já existente. Para isso, são necessárias linguagens de descrição de objetos e de conceitos aprendidos. Elas podem ser divididas em dois tipos: baseadas em atributos, ou proposicionais, e relacionais. Sistemas de AM proposicional têm sido aplicados com relativo sucesso, utilizando dados no formato atributo-valor. No entanto, são incapazes de aprender relações em função da linguagem que utilizam. Programação Lógica Indutiva PLI é uma abordagem recente dentro de AM que faz uso de uma linguagem de descrição relacional baseada em lógica de primeira ordem, de modo que consegue aprender relações entre os objetos. Todo problema que pode ser resolvido por um sistema de aprendizado proposicional pode, em princípio, ser resolvido por um sistema de aprendizado relacional, desde que os fiados estejam devidamente formatados. Uma série de ferramentas foi por nós implementada para converter os dados do formato atributo-valor para o formato relacional apropriado de dois sistemas de PLI, FOIL (Quinlan, 1990) e PROGOL (Muggleton, 1995). A partir dessas representações, tornou-se possível analisar o comportamento de cada um deles em bases de dados naturais com características diferentes. Como estudo de caso do mundo real, utiliza-se uma base de dados disponibilizada pelo Programa de Melhoramento Genético da Raça Nelore PMGRN da Universidade de São Paulo em Ribeirão Preto (Làbo et al., 1999). Utilizando os sistemas PLI, adquire-se um conhecimento sobre essa base de dados de gado. Para tanto segue-se uma metodologia baseada no processo KDD (Knowledge Discovery in Databases) descrito em (Fayyad, 1996). === Machine Learning ML is an arca in Artificial Intelligence AI which studies computational methods for acquiring new knowledge along with ways to organize existing knowledge. To do this, de,scriptive languages are necessary for the objects being studied as well as the concepts that are learned. The languages can be divided into two type,s: languages based on attributes, or propositional languages, and relational languages. Propositional ML systems have been applied to several problemas with quite a bit of succe,ss, by using data in an attribute-value format. Yet they canriot learn relationships because of the propositional language they use. Inductive Logic Programming ILP is a recent ML approach which uses a relational description language based on first-order logic, so that it is able to learn relationships between objects. Any problem that caia be solved using propositional learning can, theoretically, be solved using a relational learning system, once the data has been put in the correct format. A series of tools have been implemented by us to convert data in attribute-value format to appropriate relational formats for two ILP systems, FOIL (Quinlan, 1990) and PROGOL (Muggleton, 1995). Using these representations, it is possible to analyze the behavior of each one in natural databases with different characteristics. A database made available by the Program for the Genetic Improvement of the Nelore Breed PMGRN at the University of São Paulo in Ribeirão Preto is used as a realworld case study. Some knowledge is acquired about the cattle database, by using an ILP system and the results are discussed. A knowledge acquisition process based on the Knowledge Discovery in Database,s KDD process described in (Fayyad, 1996) is used.
author2 Monard, Maria Carolina
author_facet Monard, Maria Carolina
Caulkins, Chandler Wellington
author Caulkins, Chandler Wellington
author_sort Caulkins, Chandler Wellington
title Aquisição de Conhecimento Utilizando Aprendizado de Máquina Relacional
title_short Aquisição de Conhecimento Utilizando Aprendizado de Máquina Relacional
title_full Aquisição de Conhecimento Utilizando Aprendizado de Máquina Relacional
title_fullStr Aquisição de Conhecimento Utilizando Aprendizado de Máquina Relacional
title_full_unstemmed Aquisição de Conhecimento Utilizando Aprendizado de Máquina Relacional
title_sort aquisição de conhecimento utilizando aprendizado de máquina relacional
publisher Biblioteca Digitais de Teses e Dissertações da USP
publishDate 2000
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26022018-145221/
work_keys_str_mv AT caulkinschandlerwellington aquisicaodeconhecimentoutilizandoaprendizadodemaquinarelacional
AT caulkinschandlerwellington notavailable
_version_ 1719073757410099200