Nanowires de InP: cálculo do espectro de absorção via método k.p

Nos últimos anos, os avanços nas técnicas de crescimento de semicondutores permitiram a fabricação de nanoestruturas isoladas de alta qualidade e com confinamento radial. Essas estruturas quase unidimensionais, conhecidas como nanowires (NWs) têm aplicações tecnológicas vastas, tais como nano sensor...

Full description

Bibliographic Details
Main Author: Campos, Tiago de
Other Authors: Sipahi, Guilherme Matos
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2013
Subjects:
GPU
Online Access:http://www.teses.usp.br/teses/disponiveis/76/76132/tde-25092013-092712/
Description
Summary:Nos últimos anos, os avanços nas técnicas de crescimento de semicondutores permitiram a fabricação de nanoestruturas isoladas de alta qualidade e com confinamento radial. Essas estruturas quase unidimensionais, conhecidas como nanowires (NWs) têm aplicações tecnológicas vastas, tais como nano sensores químicos e biológicos, foto-detectores e lasers. Seu uso em aplicações tecnológicas requer a compreensão de características óticas e eletrônicas e um estudo teórico mais profundo se faz necessário. O objetivo desse estudo e calcular teoricamente o poder de absorção para NWs de InP e comparar os resultados para as fases cristalinas zincblende (ZB) e wurtzita (WZ) nas suas direções de crescimento equivalentes. Usamos neste estudo a formulação do método k.p que descreve as duas fases cristalinas em um mesmo Hamiltoniano, a aproximação da função envelope e a expansão em ondas planas. O poder de absorção foi calculado a partir das transições entre as bandas de valência e condução através da regra de ouro de Fermi. Mesmo o método k.p sendo o menos custoso computacionalmente, quando comparado com seus correspondentes ab initio, o tamanho das matrizes envolvidas nos cálculos pode ultrapassar a barreira dos giga elementos. Para lidar com essas matrizes, foi implementado um método de resolução de sistemas lineares iterativo, o LOBPCG, utilizando o poder de processamento disponível nas placas gráficas atuais. O novo modo de resolução apresentou ganhos consideráveis em relação ao desempenho observado com os métodos de diagonalização diretos em testes com confinamento em uma única direção. A falta de um pré-condicionador adequado limita o seu uso em NWs. Os cálculos de absorção para NWs na fase ZB apresentaram uma anisotropia em seu espectro de absorção de mais de 90%, enquanto os na fase WZ apresentaram dois regimes distintos de anisotropia, governados pelo aparecimento de um estado oticamente proibido no topo da banda de valência. Em suma, os resultados obtidos com o modelo teórico proposto nesse estudo apresentam as propriedades óticas reportadas na literatura, inclusive o estado oticamente proibido observado em outros sistemas na fase WZ com um alto confinamento quântico. === In recent years, the advances of growth techniques allowed the fabrication of high quality single nanostructures with quantum confinement along lateral directions. These quasi one-dimensional structures known as nanowires (NWs) have vasts technological applications, such as biological and chemical nanosensors, photo detectors and lasers. The applications involving NWs require the comprehension of their optical and electronic properties and, therefore, a deep theoretical understanding should be pursued. The aim of this study is to provide optical absorption theoretical calculations for InP NWs, comparing the results for zincblende (ZB) and wurtzite (WZ) crystal phases, in their equivalent growth directions. We use the k.p method formulation that allow the description of both structures with the same Hamiltonian, the envelope function approximation and the plane wave expansion. The absorption power was calculated for transitions between valence and conduction bands using Fermis Golden Rule. Although the k.p method demands less computational effort, when compared to ab initio calculations, the k.p matrices can break the giga elements barrier. To deal with these matrices, we implemented an linear system solver method, the LOBPCG, using the processing power available in current GPUs. The new resolution method showed a considerable gain comparing the performance of direct diagonalization methods, when tested in systems with confinement in one direction. The lack of an adequate preconditioner limits its use in NWs. The absorption spectra calculations for ZB NWs presented a 90% plus anisotropy, whilst WZ NWs have two distinct regimes, ruled by the presence of an optically forbidden state at valence band maximum. In summary, the results obtained with the theoretical model in this study are in great agreement with optical properties reported in the literature, including the optically forbidden state observed in other WZ systems with high quantum confinement.