Cálculo de espectros de fotoemissão por raios-x de íons adsorvidos em metais.

Espectros de foto-emissão são calculados com um modelo simples para a adsorção química em superfícies metálicas. Neste modelo já discutido por outros autores, o metal é representado por uma banda de condução semipreenchida e o íon adsorvido por dois níveis: um nível profundo, inicialmente ocupado pe...

Full description

Bibliographic Details
Main Author: Whitaker, Marisa Andreata
Other Authors: Oliveira, Luiz Nunes de
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 1983
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/54/54131/tde-25052009-093424/
Description
Summary:Espectros de foto-emissão são calculados com um modelo simples para a adsorção química em superfícies metálicas. Neste modelo já discutido por outros autores, o metal é representado por uma banda de condução semipreenchida e o íon adsorvido por dois níveis: um nível profundo, inicialmente ocupado pelo fotoelétron e o segundo, um nível ressonante, um orbital do átomo adsorvido o qual, atraído pelo potencial do buraco profundo, é deslocado para abaixo da energia de Fermi. O cálculo, baseado nas técnicas de grupo de renormalização desenvolvidas por Wilson para resolver o problema Kondo, considera pela primeira vez a interação eletrostática entre o buraco profundo e os estados de condução. Os resultados mostram que esta interação reduz efetivamente o acoplamento entre o nível ressonante e a banda de condução, e, portanto, modifica qualitativamente os espectros de foto-emissão. === X-Ray Photoemission spectra (XPS) are calculated for a simple model for chemisorptions on metallic surfaces. In the spineless model, already discussed by other authors, the metal is represented by a half-filled conduction band and the adsorbed ion by two levels, one representative of a deep core state initially occupied by the photoelectron and the second, a resonant level, of an initially empty adsorbate orbital which, attracted by the core hole potential, is dragged below the Fermi energy. The calculation based on the renormalization group techniques devised by Wilson to analyze the Rondo problem, accounts for the first time for the electrostatic interaction between the core hole and the conduction states. The results show that this interaction effectively narrows the coupling between the resonant level and the conduction band and hence changes qualitatively the photoemission spectra.