Extremal and probabilistic problems in order types
A configuration is a finite set of points in the plane. Two configurations have the same order type if there exists a bijection between them that preserves the orientation of every ordered triple. A configuration A contains a copy of a configuration B if some subset of A has the same order type of B...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
Biblioteca Digitais de Teses e Dissertações da USP
2018
|
Subjects: | |
Online Access: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042019-000504/ |
id |
ndltd-usp.br-oai-teses.usp.br-tde-25042019-000504 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-usp.br-oai-teses.usp.br-tde-25042019-0005042019-06-08T04:35:59Z Extremal and probabilistic problems in order types Problemas extremais e probabilísticos em o-tipos Sales, Marcelo Tadeu de Sá Oliveira Combinatória Combinatorial geometry Combinatorics Geometria combinatória Métodos probabilísticos O-tipos Order types Probabilistic method A configuration is a finite set of points in the plane. Two configurations have the same order type if there exists a bijection between them that preserves the orientation of every ordered triple. A configuration A contains a copy of a configuration B if some subset of A has the same order type of B and we denote this by B \\subset A. For a configuration B and a integer N, the extremal number ex(N,B)=max{|A|: B ot \\subset A \\subset [N]^2} is the maximum size of a subset of [N]^2 without a copy of B. We give an upper bound for general and convex cases. A random N-set is a set obtained by randomly choosing N points uniformly and independently in the unit square. A configuration is n-universal if contains all order types in general position of size n. We obtain the threshold for the n-universal property up to a log log factor, that is, we obtain integers N_0 and N_1 with log log N_1=O(log log N_0) such that if N >> N_1 (N << N_0), then a random N-set is n-universal with probability tending to 1 (tending to 0). We also determine a bound for the probability of obtaining a random set without a copy of a fixed configuration. Uma configuração é um conjunto finito de pontos no plano. Duas configurações possuem o mesmo o-tipo se existe uma bijeção entre elas que preserva a orientação de toda tripla orientada. Uma configuração A contém uma cópia da configuração B se algum subconjunto de A possui o mesmo o-tipo que B e denotamos este fato por B \\subset A. Para uma configuração B e um inteiro N, o número extremal ex(N,B)=max{|A|: B ot \\subset A \\subset [N]^2} é o maior tamanho de um subconjunto de [N]^2 sem uma cópia de B. Neste trabalho, determinamos cotas superiores para o caso geral e para o caso convexo. Um N-conjunto aleatório é um conjunto obtido escolhendo N pontos uniformemente e independentemente ao acaso do quadrado unitário. Uma configuração é n-universal se contém todos os o-tipos de tamanho n. Determinamos o limiar da propriedade de um N-conjunto aleatório ser n-universal a menos de erros da ordem de log log, isto é, determinamos inteiros N_0 e N_1 com log log N_0=O(log log N_1) tais que se N >> N_1 (N << N_0), então o N-conjunto aleatório é n-universal com probabilidade tendendo a 1 (tendendo a 0). Também obtivemos cotas para a probabilidade de um conjunto aleatório não possuir determinado o-tipo. Biblioteca Digitais de Teses e Dissertações da USP Kohayakawa, Yoshiharu 2018-06-15 Dissertação de Mestrado application/pdf http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042019-000504/ en Liberar o conteúdo para acesso público. |
collection |
NDLTD |
language |
en |
format |
Others
|
sources |
NDLTD |
topic |
Combinatória Combinatorial geometry Combinatorics Geometria combinatória Métodos probabilísticos O-tipos Order types Probabilistic method |
spellingShingle |
Combinatória Combinatorial geometry Combinatorics Geometria combinatória Métodos probabilísticos O-tipos Order types Probabilistic method Sales, Marcelo Tadeu de Sá Oliveira Extremal and probabilistic problems in order types |
description |
A configuration is a finite set of points in the plane. Two configurations have the same order type if there exists a bijection between them that preserves the orientation of every ordered triple. A configuration A contains a copy of a configuration B if some subset of A has the same order type of B and we denote this by B \\subset A. For a configuration B and a integer N, the extremal number ex(N,B)=max{|A|: B ot \\subset A \\subset [N]^2} is the maximum size of a subset of [N]^2 without a copy of B. We give an upper bound for general and convex cases. A random N-set is a set obtained by randomly choosing N points uniformly and independently in the unit square. A configuration is n-universal if contains all order types in general position of size n. We obtain the threshold for the n-universal property up to a log log factor, that is, we obtain integers N_0 and N_1 with log log N_1=O(log log N_0) such that if N >> N_1 (N << N_0), then a random N-set is n-universal with probability tending to 1 (tending to 0). We also determine a bound for the probability of obtaining a random set without a copy of a fixed configuration. === Uma configuração é um conjunto finito de pontos no plano. Duas configurações possuem o mesmo o-tipo se existe uma bijeção entre elas que preserva a orientação de toda tripla orientada. Uma configuração A contém uma cópia da configuração B se algum subconjunto de A possui o mesmo o-tipo que B e denotamos este fato por B \\subset A. Para uma configuração B e um inteiro N, o número extremal ex(N,B)=max{|A|: B ot \\subset A \\subset [N]^2} é o maior tamanho de um subconjunto de [N]^2 sem uma cópia de B. Neste trabalho, determinamos cotas superiores para o caso geral e para o caso convexo. Um N-conjunto aleatório é um conjunto obtido escolhendo N pontos uniformemente e independentemente ao acaso do quadrado unitário. Uma configuração é n-universal se contém todos os o-tipos de tamanho n. Determinamos o limiar da propriedade de um N-conjunto aleatório ser n-universal a menos de erros da ordem de log log, isto é, determinamos inteiros N_0 e N_1 com log log N_0=O(log log N_1) tais que se N >> N_1 (N << N_0), então o N-conjunto aleatório é n-universal com probabilidade tendendo a 1 (tendendo a 0). Também obtivemos cotas para a probabilidade de um conjunto aleatório não possuir determinado o-tipo. |
author2 |
Kohayakawa, Yoshiharu |
author_facet |
Kohayakawa, Yoshiharu Sales, Marcelo Tadeu de Sá Oliveira |
author |
Sales, Marcelo Tadeu de Sá Oliveira |
author_sort |
Sales, Marcelo Tadeu de Sá Oliveira |
title |
Extremal and probabilistic problems in order types |
title_short |
Extremal and probabilistic problems in order types |
title_full |
Extremal and probabilistic problems in order types |
title_fullStr |
Extremal and probabilistic problems in order types |
title_full_unstemmed |
Extremal and probabilistic problems in order types |
title_sort |
extremal and probabilistic problems in order types |
publisher |
Biblioteca Digitais de Teses e Dissertações da USP |
publishDate |
2018 |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042019-000504/ |
work_keys_str_mv |
AT salesmarcelotadeudesaoliveira extremalandprobabilisticproblemsinordertypes AT salesmarcelotadeudesaoliveira problemasextremaiseprobabilisticosemotipos |
_version_ |
1719201823293702144 |