Casamento de modelos baseado em projeções radiais e circulares invariante a pontos de vista.

Este trabalho aborda o problema de casamento entre duas imagens. Casamento de imagens pode ser do tipo casamento de modelos (template matching) ou casamento de pontos-chaves (keypoint matching). Estes algoritmos localizam uma região da primeira imagem numa segunda imagem. Nosso grupo desenvolveu doi...

Full description

Bibliographic Details
Main Author: Pérez López, Guillermo Angel
Other Authors: Kim, Hae Yong
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2015
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/3/3142/tde-24052016-150250/
id ndltd-usp.br-oai-teses.usp.br-tde-24052016-150250
record_format oai_dc
spelling ndltd-usp.br-oai-teses.usp.br-tde-24052016-1502502019-05-09T21:11:41Z Casamento de modelos baseado em projeções radiais e circulares invariante a pontos de vista. Viewpoint invariant template matching based in radial and circular proejction. Pérez López, Guillermo Angel Affine invariant Asift Asift, Casamento de modelos Ciratefi Ciratefi Forapro Forapro Illumination changes Imagem digital Invariância a escala Invariância afim Keypoints Mudança de iluminação Padrões repetitivos Pontos-chaves Repetitive patterns Scale invariant Sift Sift Simulação de pontos de vista Template matching Transformação afim Viewpoints simulation Este trabalho aborda o problema de casamento entre duas imagens. Casamento de imagens pode ser do tipo casamento de modelos (template matching) ou casamento de pontos-chaves (keypoint matching). Estes algoritmos localizam uma região da primeira imagem numa segunda imagem. Nosso grupo desenvolveu dois algoritmos de casamento de modelos invariante por rotação, escala e translação denominados Ciratefi (Circula, radial and template matchings filter) e Forapro (Fourier coefficients of radial and circular projection). As características positivas destes algoritmos são a invariância a mudanças de brilho/contraste e robustez a padrões repetitivos. Na primeira parte desta tese, tornamos Ciratefi invariante a transformações afins, obtendo Aciratefi (Affine-ciratefi). Construímos um banco de imagens para comparar este algoritmo com Asift (Affine-scale invariant feature transform) e Aforapro (Affine-forapro). Asift é considerado atualmente o melhor algoritmo de casamento de imagens invariante afim, e Aforapro foi proposto em nossa dissertação de mestrado. Nossos resultados sugerem que Aciratefi supera Asift na presença combinada de padrões repetitivos, mudanças de brilho/contraste e mudanças de pontos de vista. Na segunda parte desta tese, construímos um algoritmo para filtrar casamentos de pontos-chaves, baseado num conceito que denominamos de coerência geométrica. Aplicamos esta filtragem no bem-conhecido algoritmo Sift (scale invariant feature transform), base do Asift. Avaliamos a nossa proposta no banco de imagens de Mikolajczyk. As taxas de erro obtidas são significativamente menores que as do Sift original. This work deals with image matching. Image matchings can be modeled as template matching or keypoints matching. These algorithms search a region of the first image in a second image. Our group has developed two template matching algorithms invariant by rotation, scale and translation called Ciratefi (circular, radial and template matching filter) and Forapro (Fourier coefficients of radial and circular projection). The positive characteristics of Ciratefi and Forapro are: the invariance to brightness/contrast changes and robustness to repetitive patterns. In the first part of this work, we make Ciratefi invariant to affine transformations, getting Aciratefi (Affine-ciratefi). We have built a dataset to compare Aciratefi with Asift (Affine-scale invariant feature transform) and Aforapro (Affine-forapro). Asift is currently considered the best affine invariant image matching algorithm, and Aforapro was proposed in our master\'s thesis. Our results suggest that Aciratefi overcome Asift in the combined presence of repetitive patterns, brightness/contrast and viewpoints changes. In the second part of this work, we filter keypoints matchings based on a concept that we call geometric coherence. We apply this filtering in the well-known algorithm Sift (scale invariant feature transform), the basis of Asift. We evaluate our proposal in the Mikolajczyk images database. The error rates obtained are significantly lower than those of the original Sift. Biblioteca Digitais de Teses e Dissertações da USP Kim, Hae Yong 2015-11-23 Tese de Doutorado application/pdf http://www.teses.usp.br/teses/disponiveis/3/3142/tde-24052016-150250/ pt Liberar o conteúdo para acesso público.
collection NDLTD
language pt
format Others
sources NDLTD
topic Affine invariant
Asift
Asift,
Casamento de modelos
Ciratefi
Ciratefi
Forapro
Forapro
Illumination changes
Imagem digital
Invariância a escala
Invariância afim
Keypoints
Mudança de iluminação
Padrões repetitivos
Pontos-chaves
Repetitive patterns
Scale invariant
Sift
Sift
Simulação de pontos de vista
Template matching
Transformação afim
Viewpoints simulation
spellingShingle Affine invariant
Asift
Asift,
Casamento de modelos
Ciratefi
Ciratefi
Forapro
Forapro
Illumination changes
Imagem digital
Invariância a escala
Invariância afim
Keypoints
Mudança de iluminação
Padrões repetitivos
Pontos-chaves
Repetitive patterns
Scale invariant
Sift
Sift
Simulação de pontos de vista
Template matching
Transformação afim
Viewpoints simulation
Pérez López, Guillermo Angel
Casamento de modelos baseado em projeções radiais e circulares invariante a pontos de vista.
description Este trabalho aborda o problema de casamento entre duas imagens. Casamento de imagens pode ser do tipo casamento de modelos (template matching) ou casamento de pontos-chaves (keypoint matching). Estes algoritmos localizam uma região da primeira imagem numa segunda imagem. Nosso grupo desenvolveu dois algoritmos de casamento de modelos invariante por rotação, escala e translação denominados Ciratefi (Circula, radial and template matchings filter) e Forapro (Fourier coefficients of radial and circular projection). As características positivas destes algoritmos são a invariância a mudanças de brilho/contraste e robustez a padrões repetitivos. Na primeira parte desta tese, tornamos Ciratefi invariante a transformações afins, obtendo Aciratefi (Affine-ciratefi). Construímos um banco de imagens para comparar este algoritmo com Asift (Affine-scale invariant feature transform) e Aforapro (Affine-forapro). Asift é considerado atualmente o melhor algoritmo de casamento de imagens invariante afim, e Aforapro foi proposto em nossa dissertação de mestrado. Nossos resultados sugerem que Aciratefi supera Asift na presença combinada de padrões repetitivos, mudanças de brilho/contraste e mudanças de pontos de vista. Na segunda parte desta tese, construímos um algoritmo para filtrar casamentos de pontos-chaves, baseado num conceito que denominamos de coerência geométrica. Aplicamos esta filtragem no bem-conhecido algoritmo Sift (scale invariant feature transform), base do Asift. Avaliamos a nossa proposta no banco de imagens de Mikolajczyk. As taxas de erro obtidas são significativamente menores que as do Sift original. === This work deals with image matching. Image matchings can be modeled as template matching or keypoints matching. These algorithms search a region of the first image in a second image. Our group has developed two template matching algorithms invariant by rotation, scale and translation called Ciratefi (circular, radial and template matching filter) and Forapro (Fourier coefficients of radial and circular projection). The positive characteristics of Ciratefi and Forapro are: the invariance to brightness/contrast changes and robustness to repetitive patterns. In the first part of this work, we make Ciratefi invariant to affine transformations, getting Aciratefi (Affine-ciratefi). We have built a dataset to compare Aciratefi with Asift (Affine-scale invariant feature transform) and Aforapro (Affine-forapro). Asift is currently considered the best affine invariant image matching algorithm, and Aforapro was proposed in our master\'s thesis. Our results suggest that Aciratefi overcome Asift in the combined presence of repetitive patterns, brightness/contrast and viewpoints changes. In the second part of this work, we filter keypoints matchings based on a concept that we call geometric coherence. We apply this filtering in the well-known algorithm Sift (scale invariant feature transform), the basis of Asift. We evaluate our proposal in the Mikolajczyk images database. The error rates obtained are significantly lower than those of the original Sift.
author2 Kim, Hae Yong
author_facet Kim, Hae Yong
Pérez López, Guillermo Angel
author Pérez López, Guillermo Angel
author_sort Pérez López, Guillermo Angel
title Casamento de modelos baseado em projeções radiais e circulares invariante a pontos de vista.
title_short Casamento de modelos baseado em projeções radiais e circulares invariante a pontos de vista.
title_full Casamento de modelos baseado em projeções radiais e circulares invariante a pontos de vista.
title_fullStr Casamento de modelos baseado em projeções radiais e circulares invariante a pontos de vista.
title_full_unstemmed Casamento de modelos baseado em projeções radiais e circulares invariante a pontos de vista.
title_sort casamento de modelos baseado em projeções radiais e circulares invariante a pontos de vista.
publisher Biblioteca Digitais de Teses e Dissertações da USP
publishDate 2015
url http://www.teses.usp.br/teses/disponiveis/3/3142/tde-24052016-150250/
work_keys_str_mv AT perezlopezguillermoangel casamentodemodelosbaseadoemprojecoesradiaisecircularesinvarianteapontosdevista
AT perezlopezguillermoangel viewpointinvarianttemplatematchingbasedinradialandcircularproejction
_version_ 1719072224935149568