Efeitos termoelétricos em sistemas nanoscópicos

Efeitos termoelétricos descrevem o surgimento de campos elétricos em função de gradientes de temperatura e vice-versa. Neste trabalho investigamos as propriedades termoelétricas de materiais de baixa dimensionalidade e nanoestruturas através de cálculos de primeiros princípios das propriedades de tr...

Full description

Bibliographic Details
Main Author: Riera Junior, Alberto Torres
Other Authors: Silva, Antonio Jose Roque da
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2013
Subjects:
DFT
Online Access:http://www.teses.usp.br/teses/disponiveis/43/43134/tde-22092014-130537/
id ndltd-usp.br-oai-teses.usp.br-tde-22092014-130537
record_format oai_dc
spelling ndltd-usp.br-oai-teses.usp.br-tde-22092014-1305372019-05-09T20:53:41Z Efeitos termoelétricos em sistemas nanoscópicos Thermoelectric effects in nanoscopic Riera Junior, Alberto Torres DFT DFT EFEITO TERMOELTRICO Electronic trnasport FUÇÕES DE GREEN Green´s functions Thermoelectric effect TRANSPORTE ELETRONICO Efeitos termoelétricos descrevem o surgimento de campos elétricos em função de gradientes de temperatura e vice-versa. Neste trabalho investigamos as propriedades termoelétricas de materiais de baixa dimensionalidade e nanoestruturas através de cálculos de primeiros princípios das propriedades de transporte destes sistemas, usando o código TRANSAMPA, que é baseado em funções de Green fora do equilíbrio e do código SIESTA, baseado em teoria do funcional da densidade. Inicialmente estudamos nanofitas de grafeno e como estas são alteradas pela presença de impurezas substitucionais de Boro e Nitrogênio. Entre os principais resultados, mostramos que fitas na configuração ferromagnética apresentam efeito Seebeck dependente do spin, que pode ser ajustado por efeito de campo. A seguir, vemos que o coeficiente Seebeck (S) em bicamadas de grafeno pode ser ajustado por potenciais de gate, de forma a escolher os portadores de carga, atingindo S =_250 _V/K. Também estudamos a dependência de S com a temperatura (T) e o tamanho do gate, calculamos a condutividade térmica por dinâmica molecular e a eficiência termoelétrica (ZT). Na seqüencia, mostramos que grafeno dopado com Mn mostra caloritrônica de spin ajustável via gate e como a termocorrente varia com T e _T. Finalmente, calculamos as propriedades termoelétrica de uma junção molecular Au-BDT-Au e como elas variam em função do alongamento da junção. Também propomos um esquema geral para maximizar ZT de junções moleculares em geral. Thermoelectric effects describe how electric fields arise in response to temperature gradients and vice versa. In this thesis we investigate the thermoelectric properties of low-dimensional materials and nanostructures theoretically. We perform ab initio calculations of the electronic transport properties using the TRANSAMPA code, based in nonequilibrium Greens functions, and the SIESTA code, based in density functional theory. First, we study graphene nanoribbons and how their properties are altered by substitutional impurities. Among our main results for this system, we show that ribbons in the ferromagnetic configuration present spin-dependent Seebeck effect, which can be tuned by a field effect. We show that the Seebeck coefficient (S) of bilayer graphene is highly tunable by a gate potential, with ambipolar behavior, reaching S = _250 _V/K. We also study how S varies with temperature (T) and gate length. We calculate its thermal conductivity by molecular dynamics, and its thermoelectric efficiency (ZT ). Then, we show that Mn doped graphene features a gate-tunable spin-dependent S, which is robust under changes in T and _T, rendering this material suitable for spin caloritronics. Finally, we calculate how the thermoelectric properties of an Au-BDT-Au molecular junction vary with mechanical stretching, and propose a general recipe to improve ZT in molecular junctions in general. Biblioteca Digitais de Teses e Dissertações da USP Silva, Antonio Jose Roque da 2013-12-13 Tese de Doutorado application/pdf http://www.teses.usp.br/teses/disponiveis/43/43134/tde-22092014-130537/ pt Liberar o conteúdo para acesso público.
collection NDLTD
language pt
format Others
sources NDLTD
topic DFT
DFT
EFEITO TERMOELTRICO
Electronic trnasport
FUÇÕES DE GREEN
Green´s functions
Thermoelectric effect
TRANSPORTE ELETRONICO
spellingShingle DFT
DFT
EFEITO TERMOELTRICO
Electronic trnasport
FUÇÕES DE GREEN
Green´s functions
Thermoelectric effect
TRANSPORTE ELETRONICO
Riera Junior, Alberto Torres
Efeitos termoelétricos em sistemas nanoscópicos
description Efeitos termoelétricos descrevem o surgimento de campos elétricos em função de gradientes de temperatura e vice-versa. Neste trabalho investigamos as propriedades termoelétricas de materiais de baixa dimensionalidade e nanoestruturas através de cálculos de primeiros princípios das propriedades de transporte destes sistemas, usando o código TRANSAMPA, que é baseado em funções de Green fora do equilíbrio e do código SIESTA, baseado em teoria do funcional da densidade. Inicialmente estudamos nanofitas de grafeno e como estas são alteradas pela presença de impurezas substitucionais de Boro e Nitrogênio. Entre os principais resultados, mostramos que fitas na configuração ferromagnética apresentam efeito Seebeck dependente do spin, que pode ser ajustado por efeito de campo. A seguir, vemos que o coeficiente Seebeck (S) em bicamadas de grafeno pode ser ajustado por potenciais de gate, de forma a escolher os portadores de carga, atingindo S =_250 _V/K. Também estudamos a dependência de S com a temperatura (T) e o tamanho do gate, calculamos a condutividade térmica por dinâmica molecular e a eficiência termoelétrica (ZT). Na seqüencia, mostramos que grafeno dopado com Mn mostra caloritrônica de spin ajustável via gate e como a termocorrente varia com T e _T. Finalmente, calculamos as propriedades termoelétrica de uma junção molecular Au-BDT-Au e como elas variam em função do alongamento da junção. Também propomos um esquema geral para maximizar ZT de junções moleculares em geral. === Thermoelectric effects describe how electric fields arise in response to temperature gradients and vice versa. In this thesis we investigate the thermoelectric properties of low-dimensional materials and nanostructures theoretically. We perform ab initio calculations of the electronic transport properties using the TRANSAMPA code, based in nonequilibrium Greens functions, and the SIESTA code, based in density functional theory. First, we study graphene nanoribbons and how their properties are altered by substitutional impurities. Among our main results for this system, we show that ribbons in the ferromagnetic configuration present spin-dependent Seebeck effect, which can be tuned by a field effect. We show that the Seebeck coefficient (S) of bilayer graphene is highly tunable by a gate potential, with ambipolar behavior, reaching S = _250 _V/K. We also study how S varies with temperature (T) and gate length. We calculate its thermal conductivity by molecular dynamics, and its thermoelectric efficiency (ZT ). Then, we show that Mn doped graphene features a gate-tunable spin-dependent S, which is robust under changes in T and _T, rendering this material suitable for spin caloritronics. Finally, we calculate how the thermoelectric properties of an Au-BDT-Au molecular junction vary with mechanical stretching, and propose a general recipe to improve ZT in molecular junctions in general.
author2 Silva, Antonio Jose Roque da
author_facet Silva, Antonio Jose Roque da
Riera Junior, Alberto Torres
author Riera Junior, Alberto Torres
author_sort Riera Junior, Alberto Torres
title Efeitos termoelétricos em sistemas nanoscópicos
title_short Efeitos termoelétricos em sistemas nanoscópicos
title_full Efeitos termoelétricos em sistemas nanoscópicos
title_fullStr Efeitos termoelétricos em sistemas nanoscópicos
title_full_unstemmed Efeitos termoelétricos em sistemas nanoscópicos
title_sort efeitos termoelétricos em sistemas nanoscópicos
publisher Biblioteca Digitais de Teses e Dissertações da USP
publishDate 2013
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-22092014-130537/
work_keys_str_mv AT rierajunioralbertotorres efeitostermoeletricosemsistemasnanoscopicos
AT rierajunioralbertotorres thermoelectriceffectsinnanoscopic
_version_ 1719070636203048960