Estruturas unidimensionais e bidimensionais utilizando P-splines nos modelos mistos aditivos generalizados com aplicação na produção de cana-de-açúcar
Os P-splines de Eilers e Marx (1996) são métodos de suavização que é uma combinação de bases B-splines e uma penalização discreta sobre os coeficientes das bases utilizados para suavizar dados normais e não normais em uma ou mais dimensões, no caso de várias dimensões utiliza-se como suavização o pr...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | pt |
Published: |
Biblioteca Digitais de Teses e Dissertações da USP
2017
|
Subjects: | |
Online Access: | http://www.teses.usp.br/teses/disponiveis/11/11134/tde-22032018-145655/ |
id |
ndltd-usp.br-oai-teses.usp.br-tde-22032018-145655 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-usp.br-oai-teses.usp.br-tde-22032018-1456552019-05-09T20:48:09Z Estruturas unidimensionais e bidimensionais utilizando P-splines nos modelos mistos aditivos generalizados com aplicação na produção de cana-de-açúcar Unidimensional and bidimensional structures using P-splines in generalized additive mixed models with application in the production of sugarcane Rondinel Mendoza, Natalie Veronika B-splines B-splines Generalized additive mixed model Modelo misto aditivo generalizado P-splines P-splines Produto tensor Tensor product Os P-splines de Eilers e Marx (1996) são métodos de suavização que é uma combinação de bases B-splines e uma penalização discreta sobre os coeficientes das bases utilizados para suavizar dados normais e não normais em uma ou mais dimensões, no caso de várias dimensões utiliza-se como suavização o produto tensor dos P-splines. Também os P-splines são utilizados como representação de modelos mistos Currie et al. (2006) pela presença de características tais como: efeitos fixos, efeitos aleatórios, correlação espacial ou temporal e utilizados em modelos mais generalizados tais como os modelos mistos lineares generalizados e modelos mistos aditivos generalizados. Neste trabalho apresentou-se toda a abordagem, metodologia e descrição dos P-splines como modelos mistos e como componentes das estruturas suavizadoras de variáveis unidimensionais e bidimensionais dos modelos mistos aditivos generalizados, mostrando essa abordagem e propondo seu uso em uma aplicação no comportamento dos níveis médios da produção de cana-de-açúcar sob a influência das alterações das variáveis climáticas como temperatura e precipitação, que foram medidos ao longo de 10 anos em cada mesorregião do Estado de São Paulo. O motivo de usar essa abordagem como método de suavização é que muitas vezes não é conhecido a tendência dessas covariáveis climáticas mas sabe-se que elas influenciam diretamente sobre a variável resposta. Além de permitir essa abordagem inclusão de efeitos fixos e aleatórios nos modelos a serem propostos, permitirá a inclusão do processo autoregressivo AR(1) como estrutura de correlação nos resíduos. P-splines of Eilers e Marx (1996) are methods of smoothing that is a combination of B-splines bases and penalty the coefficients of the bases used to smooth normal and non-normal data in one or more dimensions; in the case of several dimensions it is used as smoothing the tensor product of the P-splines. Also the P-splines are used as representation of mixed models Currie et al. (2006) by the presence of characteristics such as: fixed effects, random effects, spatial or temporal correlation and used in more generalized models such as generalized linear mixed models and generalized additive mixed models. In this work the whole approach, methodology and description of the P-splines as mixed models and as components of the smoothing structures of one-dimensional and two-dimensional variables of generalized additive mixed models were presented, showing this approach and proposing its application in the behavior of the average levels of sugarcane production, which is influenced by changes in climatic variables such as temperature and precipitation , which were measured over 10 years in each mesoregion of the state of São Paulo. The reason for using this approach as a smoothing method is that the tendency of these climate covariables is not know for the most part, but is known that they influence directly the response variable, besides allowing this approach to include fixed and random effects in the models to be proposed, will allow the inclusion of the autoregressive process AR(1) as a correlation structure in the residuos. Biblioteca Digitais de Teses e Dissertações da USP Piedade, Sonia Maria de Stefano 2017-11-29 Tese de Doutorado application/pdf http://www.teses.usp.br/teses/disponiveis/11/11134/tde-22032018-145655/ pt Liberar o conteúdo para acesso público. |
collection |
NDLTD |
language |
pt |
format |
Others
|
sources |
NDLTD |
topic |
B-splines B-splines Generalized additive mixed model Modelo misto aditivo generalizado P-splines P-splines Produto tensor Tensor product |
spellingShingle |
B-splines B-splines Generalized additive mixed model Modelo misto aditivo generalizado P-splines P-splines Produto tensor Tensor product Rondinel Mendoza, Natalie Veronika Estruturas unidimensionais e bidimensionais utilizando P-splines nos modelos mistos aditivos generalizados com aplicação na produção de cana-de-açúcar |
description |
Os P-splines de Eilers e Marx (1996) são métodos de suavização que é uma combinação de bases B-splines e uma penalização discreta sobre os coeficientes das bases utilizados para suavizar dados normais e não normais em uma ou mais dimensões, no caso de várias dimensões utiliza-se como suavização o produto tensor dos P-splines. Também os P-splines são utilizados como representação de modelos mistos Currie et al. (2006) pela presença de características tais como: efeitos fixos, efeitos aleatórios, correlação espacial ou temporal e utilizados em modelos mais generalizados tais como os modelos mistos lineares generalizados e modelos mistos aditivos generalizados. Neste trabalho apresentou-se toda a abordagem, metodologia e descrição dos P-splines como modelos mistos e como componentes das estruturas suavizadoras de variáveis unidimensionais e bidimensionais dos modelos mistos aditivos generalizados, mostrando essa abordagem e propondo seu uso em uma aplicação no comportamento dos níveis médios da produção de cana-de-açúcar sob a influência das alterações das variáveis climáticas como temperatura e precipitação, que foram medidos ao longo de 10 anos em cada mesorregião do Estado de São Paulo. O motivo de usar essa abordagem como método de suavização é que muitas vezes não é conhecido a tendência dessas covariáveis climáticas mas sabe-se que elas influenciam diretamente sobre a variável resposta. Além de permitir essa abordagem inclusão de efeitos fixos e aleatórios nos modelos a serem propostos, permitirá a inclusão do processo autoregressivo AR(1) como estrutura de correlação nos resíduos. === P-splines of Eilers e Marx (1996) are methods of smoothing that is a combination of B-splines bases and penalty the coefficients of the bases used to smooth normal and non-normal data in one or more dimensions; in the case of several dimensions it is used as smoothing the tensor product of the P-splines. Also the P-splines are used as representation of mixed models Currie et al. (2006) by the presence of characteristics such as: fixed effects, random effects, spatial or temporal correlation and used in more generalized models such as generalized linear mixed models and generalized additive mixed models. In this work the whole approach, methodology and description of the P-splines as mixed models and as components of the smoothing structures of one-dimensional and two-dimensional variables of generalized additive mixed models were presented, showing this approach and proposing its application in the behavior of the average levels of sugarcane production, which is influenced by changes in climatic variables such as temperature and precipitation , which were measured over 10 years in each mesoregion of the state of São Paulo. The reason for using this approach as a smoothing method is that the tendency of these climate covariables is not know for the most part, but is known that they influence directly the response variable, besides allowing this approach to include fixed and random effects in the models to be proposed, will allow the inclusion of the autoregressive process AR(1) as a correlation structure in the residuos. |
author2 |
Piedade, Sonia Maria de Stefano |
author_facet |
Piedade, Sonia Maria de Stefano Rondinel Mendoza, Natalie Veronika |
author |
Rondinel Mendoza, Natalie Veronika |
author_sort |
Rondinel Mendoza, Natalie Veronika |
title |
Estruturas unidimensionais e bidimensionais utilizando P-splines nos modelos mistos aditivos generalizados com aplicação na produção de cana-de-açúcar |
title_short |
Estruturas unidimensionais e bidimensionais utilizando P-splines nos modelos mistos aditivos generalizados com aplicação na produção de cana-de-açúcar |
title_full |
Estruturas unidimensionais e bidimensionais utilizando P-splines nos modelos mistos aditivos generalizados com aplicação na produção de cana-de-açúcar |
title_fullStr |
Estruturas unidimensionais e bidimensionais utilizando P-splines nos modelos mistos aditivos generalizados com aplicação na produção de cana-de-açúcar |
title_full_unstemmed |
Estruturas unidimensionais e bidimensionais utilizando P-splines nos modelos mistos aditivos generalizados com aplicação na produção de cana-de-açúcar |
title_sort |
estruturas unidimensionais e bidimensionais utilizando p-splines nos modelos mistos aditivos generalizados com aplicação na produção de cana-de-açúcar |
publisher |
Biblioteca Digitais de Teses e Dissertações da USP |
publishDate |
2017 |
url |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-22032018-145655/ |
work_keys_str_mv |
AT rondinelmendozanatalieveronika estruturasunidimensionaisebidimensionaisutilizandopsplinesnosmodelosmistosaditivosgeneralizadoscomaplicacaonaproducaodecanadeacucar AT rondinelmendozanatalieveronika unidimensionalandbidimensionalstructuresusingpsplinesingeneralizedadditivemixedmodelswithapplicationintheproductionofsugarcane |
_version_ |
1719070078923702272 |