Modeling spreading processes in complex networks

Mathematical modeling of spreading processes have been largely studied in the literature, and its presented a boom in the past few years. This is a fundamental task on the understanding and prediction of real spreading processes on top of a population and are subject to many structural and dynamical...

Full description

Bibliographic Details
Main Author: Arruda, Guilherme Ferraz de
Other Authors: Rodrigues, Francisco Aparecido
Format: Others
Language:en
Published: Biblioteca Digitais de Teses e Dissertações da USP 2017
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20072018-160836/
id ndltd-usp.br-oai-teses.usp.br-tde-20072018-160836
record_format oai_dc
collection NDLTD
language en
format Others
sources NDLTD
topic Complex networks
Computational physics
Epidemic spreading
Física Computacional
Multilayer networks
Processos estocásticos
Propagação de epidemias
Redes complexas
Redes de múltiplas camadas
Stochastic processes
spellingShingle Complex networks
Computational physics
Epidemic spreading
Física Computacional
Multilayer networks
Processos estocásticos
Propagação de epidemias
Redes complexas
Redes de múltiplas camadas
Stochastic processes
Arruda, Guilherme Ferraz de
Modeling spreading processes in complex networks
description Mathematical modeling of spreading processes have been largely studied in the literature, and its presented a boom in the past few years. This is a fundamental task on the understanding and prediction of real spreading processes on top of a population and are subject to many structural and dynamical constraints. Aiming at a better understanding of this processes, we focused in two task: the modeling and the analysis of both dynamical and structural aspects of these processes. Initially, we proposed a new and general model that unifies epidemic and rumor spreading. Besides, regarding the analysis of these processes, we extended the classical formalism to multilayer networks, in which the theory was lacking. Interestingly, this study opened up new challenges concerning the understanding of multilayer networks. More specifically, regarding their spectral properties. In this thesis, we analyzed such processes on top of single and multilayer networks. Thus, throughout our analysis, we followed three complementary approaches: (i) analytical, (ii) numerical and (iii) simulations, mainly Monte Carlo simulations. Our main results are: (i) a new unifying model, enabling us to model and understand spreading processes on large systems, (ii) characterization of new phenomena on multilayer networks, such as layer-wise localization and the barrier effect and (iii) an spectral analysis of multilayer systems, suggesting a universal parameter and proposing a new analytical tool for its analysis. Our contributions enable further research on modeling of spreading processes, also emphasizing the importance of considering the complete multilayer structure instead of any coarse-graining. Additionally, it can be directly applied on the prediction and modeling real processes. Thus, aside from the theoretical interest and its mathematical implications, it also presents important social impact. === A modelagem matemática dos processos de disseminação tem sido amplamente estudada na literatura, sendo que o seu estudo apresentou um boom nos últimos anos. Esta é uma tarefa fundamental na compreensão e previsão de epidemias reais e propagação de rumores numa população, ademais, estas estão sujeitas a muitas restrições estruturais e dinâmicas. Com o objetivo de entender melhor esses processos, nos concentramos em duas tarefas: a de modelagem e a de análise de aspectos dinâmicos e estruturais. No primeiro, propomos um modelo novo e geral que une a epidemia e propagação de rumores. Também, no que diz respeito à análise desses processos, estendemos o formalismo clássico às redes multicamadas, onde tal teoria era inexistente. Curiosamente, este estudo abriu novos desafios relacionados à compreensão de redes multicamadas, mais especificamente em relação às suas propriedades espectrais. Nessa tese, analisamos esses processos em redes de uma e múltiplas camadas. Ao longo de nossas análises seguimos três abordagens complementares: (i) análises analíticas, (ii) experimentos numéricos e (iii) simulações de Monte Carlo. Assim, nossos principais resultados são: (i) um novo modelo que unifica as dinâmicas de rumor e epidemias, nos permitindo modelar e entender tais processos em grandes sistemas, (ii) caracterização de novos fenômenos em redes multicamadas, como a localização em camadas e o efeito barreira e (iii) uma análise espectral de sistemas multicamadas, sugerindo um parâmetro de escala universal e propondo uma nova ferramenta analítica para sua análise. Nossas contribuições permitem que novas pesquisas sobre modelagem de processos de propagação, enfatizando também a importância de se considerar a estrutura multicamada. Dessa forma, as nossas contribuições podem ser diretamente aplicadas à predição e modelagem de processos reais. Além do interesse teórico e matemático, nosso trabalho também apresenta implicações sociais importantes.
author2 Rodrigues, Francisco Aparecido
author_facet Rodrigues, Francisco Aparecido
Arruda, Guilherme Ferraz de
author Arruda, Guilherme Ferraz de
author_sort Arruda, Guilherme Ferraz de
title Modeling spreading processes in complex networks
title_short Modeling spreading processes in complex networks
title_full Modeling spreading processes in complex networks
title_fullStr Modeling spreading processes in complex networks
title_full_unstemmed Modeling spreading processes in complex networks
title_sort modeling spreading processes in complex networks
publisher Biblioteca Digitais de Teses e Dissertações da USP
publishDate 2017
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20072018-160836/
work_keys_str_mv AT arrudaguilhermeferrazde modelingspreadingprocessesincomplexnetworks
AT arrudaguilhermeferrazde modelagemdeprocessosdepropagacaoemredescomplexas
_version_ 1719068489970352128
spelling ndltd-usp.br-oai-teses.usp.br-tde-20072018-1608362019-05-09T20:33:23Z Modeling spreading processes in complex networks Modelagem de processos de propagação em redes complexas Arruda, Guilherme Ferraz de Complex networks Computational physics Epidemic spreading Física Computacional Multilayer networks Processos estocásticos Propagação de epidemias Redes complexas Redes de múltiplas camadas Stochastic processes Mathematical modeling of spreading processes have been largely studied in the literature, and its presented a boom in the past few years. This is a fundamental task on the understanding and prediction of real spreading processes on top of a population and are subject to many structural and dynamical constraints. Aiming at a better understanding of this processes, we focused in two task: the modeling and the analysis of both dynamical and structural aspects of these processes. Initially, we proposed a new and general model that unifies epidemic and rumor spreading. Besides, regarding the analysis of these processes, we extended the classical formalism to multilayer networks, in which the theory was lacking. Interestingly, this study opened up new challenges concerning the understanding of multilayer networks. More specifically, regarding their spectral properties. In this thesis, we analyzed such processes on top of single and multilayer networks. Thus, throughout our analysis, we followed three complementary approaches: (i) analytical, (ii) numerical and (iii) simulations, mainly Monte Carlo simulations. Our main results are: (i) a new unifying model, enabling us to model and understand spreading processes on large systems, (ii) characterization of new phenomena on multilayer networks, such as layer-wise localization and the barrier effect and (iii) an spectral analysis of multilayer systems, suggesting a universal parameter and proposing a new analytical tool for its analysis. Our contributions enable further research on modeling of spreading processes, also emphasizing the importance of considering the complete multilayer structure instead of any coarse-graining. Additionally, it can be directly applied on the prediction and modeling real processes. Thus, aside from the theoretical interest and its mathematical implications, it also presents important social impact. A modelagem matemática dos processos de disseminação tem sido amplamente estudada na literatura, sendo que o seu estudo apresentou um boom nos últimos anos. Esta é uma tarefa fundamental na compreensão e previsão de epidemias reais e propagação de rumores numa população, ademais, estas estão sujeitas a muitas restrições estruturais e dinâmicas. Com o objetivo de entender melhor esses processos, nos concentramos em duas tarefas: a de modelagem e a de análise de aspectos dinâmicos e estruturais. No primeiro, propomos um modelo novo e geral que une a epidemia e propagação de rumores. Também, no que diz respeito à análise desses processos, estendemos o formalismo clássico às redes multicamadas, onde tal teoria era inexistente. Curiosamente, este estudo abriu novos desafios relacionados à compreensão de redes multicamadas, mais especificamente em relação às suas propriedades espectrais. Nessa tese, analisamos esses processos em redes de uma e múltiplas camadas. Ao longo de nossas análises seguimos três abordagens complementares: (i) análises analíticas, (ii) experimentos numéricos e (iii) simulações de Monte Carlo. Assim, nossos principais resultados são: (i) um novo modelo que unifica as dinâmicas de rumor e epidemias, nos permitindo modelar e entender tais processos em grandes sistemas, (ii) caracterização de novos fenômenos em redes multicamadas, como a localização em camadas e o efeito barreira e (iii) uma análise espectral de sistemas multicamadas, sugerindo um parâmetro de escala universal e propondo uma nova ferramenta analítica para sua análise. Nossas contribuições permitem que novas pesquisas sobre modelagem de processos de propagação, enfatizando também a importância de se considerar a estrutura multicamada. Dessa forma, as nossas contribuições podem ser diretamente aplicadas à predição e modelagem de processos reais. Além do interesse teórico e matemático, nosso trabalho também apresenta implicações sociais importantes. Biblioteca Digitais de Teses e Dissertações da USP Rodrigues, Francisco Aparecido 2017-12-19 Tese de Doutorado application/pdf http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20072018-160836/ en Liberar o conteúdo para acesso público.