On the use of control- and data-ow in fault localization

Testing and debugging are key tasks during the development cycle. However, they are among the most expensive activities during the development process. To improve the productivity of developers during the debugging process various fault localization techniques have been proposed, being Spectrum-base...

Full description

Bibliographic Details
Main Author: Ribeiro, Henrique Lemos
Other Authors: Chaim, Marcos Lordello
Format: Others
Language:en
Published: Biblioteca Digitais de Teses e Dissertações da USP 2016
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/100/100131/tde-18102016-092654/
id ndltd-usp.br-oai-teses.usp.br-tde-18102016-092654
record_format oai_dc
collection NDLTD
language en
format Others
sources NDLTD
topic Control-flow
Data-flow
Engenharia de software
Fault localization
Fluxo de controle
Fluxo de dados
Localização de defeitos
Software engineering
spellingShingle Control-flow
Data-flow
Engenharia de software
Fault localization
Fluxo de controle
Fluxo de dados
Localização de defeitos
Software engineering
Ribeiro, Henrique Lemos
On the use of control- and data-ow in fault localization
description Testing and debugging are key tasks during the development cycle. However, they are among the most expensive activities during the development process. To improve the productivity of developers during the debugging process various fault localization techniques have been proposed, being Spectrum-based Fault Localization (SFL), or Coverage-based Fault Localization (CBFL), one of the most promising. SFL techniques pinpoints program elements (e.g., statements, branches, and definition-use associations), sorting them by their suspiciousness. Heuristics are used to rank the most suspicious program elements which are then mapped into lines to be inspected by developers. Although data-flow spectra (definition-use associations) has been shown to perform better than control-flow spectra (statements and branches) to locate the bug site, the high overhead to collect data-flow spectra has prevented their use on industry-level code. A data-flow coverage tool was recently implemented presenting on average 38% run-time overhead for large programs. Such a fairly modest overhead motivates the study of SFL techniques using data-flow information in programs similar to those developed in the industry. To achieve such a goal, we implemented Jaguar (JAva coveraGe faUlt locAlization Ranking), a tool that employ control-flow and data-flow coverage on SFL techniques. The effectiveness and efficiency of both coverages are compared using 173 faulty versions with sizes varying from 10 to 96 KLOC. Ten known SFL heuristics to rank the most suspicious lines are utilized. The results show that the behavior of the heuristics are similar both to control- and data-flow coverage: Kulczynski2 and Mccon perform better for small number of lines investigated (from 5 to 30 lines) while Ochiai performs better when more lines are inspected (30 to 100 lines). The comparison between control- and data-flow coverages shows that data-flow locates more defects in the range of 10 to 50 inspected lines, being up to 22% more effective. Moreover, in the range of 20 and 100 lines, data-flow ranks the bug better than control-flow with statistical significance. However, data-flow is still more expensive than control-flow: it takes from 23% to 245% longer to obtain the most suspicious lines; on average data-flow is 129% more costly. Therefore, our results suggest that data-flow is more effective in locating faults because it tracks more relationships during the program execution. On the other hand, SFL techniques supported by data-flow coverage needs to be improved for practical use at industrial settings === Teste e depuração são tarefas importantes durante o ciclo de desenvolvimento de programas, no entanto, estão entre as atividades mais caras do processo de desenvolvimento. Diversas técnicas de localização de defeitos têm sido propostas a fim de melhorar a produtividade dos desenvolvedores durante o processo de depuração, sendo a localização de defeitos baseados em cobertura de código (Spectrum-based Fault Localization (SFL) uma das mais promissoras. A técnica SFL aponta os elementos de programas (e.g., comandos, ramos e associações definição-uso), ordenando-os por valor de suspeição. Heursticas são usadas para ordenar os elementos mais suspeitos de um programa, que então são mapeados em linhas de código a serem inspecionadas pelos desenvolvedores. Embora informações de fluxo de dados (associações definição-uso) tenham mostrado desempenho melhor do que informações de fluxo de controle (comandos e ramos) para localizar defeitos, o alto custo para coletar cobertura de fluxo de dados tem impedido a sua utilização na prática. Uma ferramenta de cobertura de fluxo de dados foi recentemente implementada apresentando, em média, 38% de sobrecarga em tempo de execução em programas similares aos desenvolvidos na indústria. Tal sobrecarga, bastante modesta, motiva o estudo de SFL usando informações de fluxo de dados. Para atingir esse objetivo, Jaguar (Java coveraGe faUlt locAlization Ranking), uma ferramenta que usa técnicas SFL com cobertura de fluxo de controle e de dados, foi implementada. A eficiência e eficácia de ambos os tipos de coberturas foram comparados usando 173 versões com defeitos de programas com tamanhos variando de 10 a 96 KLOC. Foram usadas dez heursticas conhecidas para ordenar as linhas mais suspeitas. Os resultados mostram que o comportamento das heursticas são similares para fluxo de controle e de dados: Kulczyski2 e Mccon obtêm melhores resultados para números menores de linhas investigadas (de 5 a 30), enquanto Ochiai é melhor quando mais linhas são inspecionadas (de 30 a 100). A comparação entre os dois tipos de cobertura mostra que fluxo de dados localiza mais defeitos em uma variação de 10 a 50 linhas inspecionadas, sendo até 22% mais eficaz. Além disso, na faixa entre 20 e 100 linhas, fluxo de dados classifica com significância estatstica melhor os defeitos. No entanto, fluxo de dados é mais caro do que fluxo de controle: leva de 23% a 245% mais tempo para obter os resultados; fluxo de dados é em média 129% mais custoso. Portanto, os resultados indicam que fluxo de dados é mais eficaz para localizar os defeitos pois rastreia mais relacionamentos durante a execução do programa. Por outro lado, técnicas SFL apoiadas por cobertura de fluxo de dados precisam ser mais eficientes para utilização prática na indústria
author2 Chaim, Marcos Lordello
author_facet Chaim, Marcos Lordello
Ribeiro, Henrique Lemos
author Ribeiro, Henrique Lemos
author_sort Ribeiro, Henrique Lemos
title On the use of control- and data-ow in fault localization
title_short On the use of control- and data-ow in fault localization
title_full On the use of control- and data-ow in fault localization
title_fullStr On the use of control- and data-ow in fault localization
title_full_unstemmed On the use of control- and data-ow in fault localization
title_sort on the use of control- and data-ow in fault localization
publisher Biblioteca Digitais de Teses e Dissertações da USP
publishDate 2016
url http://www.teses.usp.br/teses/disponiveis/100/100131/tde-18102016-092654/
work_keys_str_mv AT ribeirohenriquelemos ontheuseofcontrolanddataowinfaultlocalization
AT ribeirohenriquelemos sobreousodefluxodecontroleededadosparaalocalizaodedefeitos
_version_ 1719066548835975168
spelling ndltd-usp.br-oai-teses.usp.br-tde-18102016-0926542019-05-09T20:13:49Z On the use of control- and data-ow in fault localization Sobre o uso de fluxo de controle e de dados para a localizao de defeitos Ribeiro, Henrique Lemos Control-flow Data-flow Engenharia de software Fault localization Fluxo de controle Fluxo de dados Localização de defeitos Software engineering Testing and debugging are key tasks during the development cycle. However, they are among the most expensive activities during the development process. To improve the productivity of developers during the debugging process various fault localization techniques have been proposed, being Spectrum-based Fault Localization (SFL), or Coverage-based Fault Localization (CBFL), one of the most promising. SFL techniques pinpoints program elements (e.g., statements, branches, and definition-use associations), sorting them by their suspiciousness. Heuristics are used to rank the most suspicious program elements which are then mapped into lines to be inspected by developers. Although data-flow spectra (definition-use associations) has been shown to perform better than control-flow spectra (statements and branches) to locate the bug site, the high overhead to collect data-flow spectra has prevented their use on industry-level code. A data-flow coverage tool was recently implemented presenting on average 38% run-time overhead for large programs. Such a fairly modest overhead motivates the study of SFL techniques using data-flow information in programs similar to those developed in the industry. To achieve such a goal, we implemented Jaguar (JAva coveraGe faUlt locAlization Ranking), a tool that employ control-flow and data-flow coverage on SFL techniques. The effectiveness and efficiency of both coverages are compared using 173 faulty versions with sizes varying from 10 to 96 KLOC. Ten known SFL heuristics to rank the most suspicious lines are utilized. The results show that the behavior of the heuristics are similar both to control- and data-flow coverage: Kulczynski2 and Mccon perform better for small number of lines investigated (from 5 to 30 lines) while Ochiai performs better when more lines are inspected (30 to 100 lines). The comparison between control- and data-flow coverages shows that data-flow locates more defects in the range of 10 to 50 inspected lines, being up to 22% more effective. Moreover, in the range of 20 and 100 lines, data-flow ranks the bug better than control-flow with statistical significance. However, data-flow is still more expensive than control-flow: it takes from 23% to 245% longer to obtain the most suspicious lines; on average data-flow is 129% more costly. Therefore, our results suggest that data-flow is more effective in locating faults because it tracks more relationships during the program execution. On the other hand, SFL techniques supported by data-flow coverage needs to be improved for practical use at industrial settings Teste e depuração são tarefas importantes durante o ciclo de desenvolvimento de programas, no entanto, estão entre as atividades mais caras do processo de desenvolvimento. Diversas técnicas de localização de defeitos têm sido propostas a fim de melhorar a produtividade dos desenvolvedores durante o processo de depuração, sendo a localização de defeitos baseados em cobertura de código (Spectrum-based Fault Localization (SFL) uma das mais promissoras. A técnica SFL aponta os elementos de programas (e.g., comandos, ramos e associações definição-uso), ordenando-os por valor de suspeição. Heursticas são usadas para ordenar os elementos mais suspeitos de um programa, que então são mapeados em linhas de código a serem inspecionadas pelos desenvolvedores. Embora informações de fluxo de dados (associações definição-uso) tenham mostrado desempenho melhor do que informações de fluxo de controle (comandos e ramos) para localizar defeitos, o alto custo para coletar cobertura de fluxo de dados tem impedido a sua utilização na prática. Uma ferramenta de cobertura de fluxo de dados foi recentemente implementada apresentando, em média, 38% de sobrecarga em tempo de execução em programas similares aos desenvolvidos na indústria. Tal sobrecarga, bastante modesta, motiva o estudo de SFL usando informações de fluxo de dados. Para atingir esse objetivo, Jaguar (Java coveraGe faUlt locAlization Ranking), uma ferramenta que usa técnicas SFL com cobertura de fluxo de controle e de dados, foi implementada. A eficiência e eficácia de ambos os tipos de coberturas foram comparados usando 173 versões com defeitos de programas com tamanhos variando de 10 a 96 KLOC. Foram usadas dez heursticas conhecidas para ordenar as linhas mais suspeitas. Os resultados mostram que o comportamento das heursticas são similares para fluxo de controle e de dados: Kulczyski2 e Mccon obtêm melhores resultados para números menores de linhas investigadas (de 5 a 30), enquanto Ochiai é melhor quando mais linhas são inspecionadas (de 30 a 100). A comparação entre os dois tipos de cobertura mostra que fluxo de dados localiza mais defeitos em uma variação de 10 a 50 linhas inspecionadas, sendo até 22% mais eficaz. Além disso, na faixa entre 20 e 100 linhas, fluxo de dados classifica com significância estatstica melhor os defeitos. No entanto, fluxo de dados é mais caro do que fluxo de controle: leva de 23% a 245% mais tempo para obter os resultados; fluxo de dados é em média 129% mais custoso. Portanto, os resultados indicam que fluxo de dados é mais eficaz para localizar os defeitos pois rastreia mais relacionamentos durante a execução do programa. Por outro lado, técnicas SFL apoiadas por cobertura de fluxo de dados precisam ser mais eficientes para utilização prática na indústria Biblioteca Digitais de Teses e Dissertações da USP Chaim, Marcos Lordello 2016-08-19 Dissertação de Mestrado application/pdf http://www.teses.usp.br/teses/disponiveis/100/100131/tde-18102016-092654/ en Liberar o conteúdo para acesso público.