Modelos para proporções com superdispersão e excesso de zeros - um procedimento Bayesiano.

Neste trabalho, trˆes modelos foram ajustados a um conjunto de dados obtido de um ensaio de controle biol´ogico para Diatraea saccharalis, uma praga comum em planta¸c˜oes de cana-de-a¸c´ucar. Usando a distribui¸c˜ao binomial como modelo de probabilidade, um ajuste adequado n˜ao pode ser obtido, d...

Full description

Bibliographic Details
Main Author: Borgatto, Adriano Ferreti
Other Authors: Demetrio, Clarice Garcia Borges
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2004
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/11/11134/tde-16092004-154821/
Description
Summary:Neste trabalho, trˆes modelos foram ajustados a um conjunto de dados obtido de um ensaio de controle biol´ogico para Diatraea saccharalis, uma praga comum em planta¸c˜oes de cana-de-a¸c´ucar. Usando a distribui¸c˜ao binomial como modelo de probabilidade, um ajuste adequado n˜ao pode ser obtido, devido `a superdispers˜ao gerada pela variabililidade dos dados e pelo excesso de zeros. Nesse caso, o modelo binomial inflacionado de zeros (ZIB) superdisperso ´e mais flex´ývel e eficiente para a modelagem desse tipo de dados. Entretanto, quando o interesse maior est´a sobre os valores positivos das propor¸c˜oes, pode-se utilizar o modelo binomial truncado superdisperso. Uma abordagem alternativa eficiente que foi utilizada para a modelagem desse tipo de dados foi a Bayesiana, sendo o ajuste do modelo realizado usando as t´ecnicas de simula¸c˜ao Monte Carlo em Cadeias de Markov, atrav´es do algoritmo Metropolis-Hastings e a sele¸c˜ao dos modelos foi feita usando o DIC (Deviance Information Criterion) e o fator de Bayes. Os modelos foram implementados no procedimento IML (Iteractive Matrix Linear) do programa SAS (Statistical Analysis System) e no programa WinBUGS e a convergˆencia das estimativas foi verificada atrav´es da an´alise gr´afica dos valores gerados e usando os diagn´osticos de Raftery & Lewis e de Heidelberger & Welch, implementado no m´odulo CODA do programa R. === In general the standard binomial regression models do not fit well to proportion data from biological control assays, manly when there is excess of zeros and overdispersion. In this work a zero-inflated binomial model is applied to a data set obtained from a biological control assay for Diatraea saccharalis, a commom pest in sugar cane. A parasite (Trichogramma galloi) was put to parasitize 128 eggs of the Anagasta kuehniella, an economically suitable alternative host (Parra, 1997), with a variable number of female parasites (2, 4, 8,..., 128), each with 10 replicates in a completely randomized experiment. When interest is only in the positive proportion data, a model can be based on the truncated binomial distribution. A Bayesian procedure was formulated using a simulation technique (Metropolis Hastings) for estimation of the posterior parameters of interest. The convergence of the Markov Chain generated was monitored by visualization of the trace plot and using Raftery & Lewis and Heidelberg & Welch diagnostics presented in the module CODA of the software R.