Summary: | Neste trabalho, o método de Monte Carlo e a resolução da Equação Mestra foram utilizados para simular o processo de difusão espectral da excitação em um sistema polimérico emissor de luz. A metodologia utilizada incorpora a relaxação energética intramolecular, a migração de energia incoerente entre segmentos conjugados e o processo final radiativo (luminescência). O principal objetivo é comparar os resultados da simulação e de experimentos envolvendo medidas de absorção, de excitação óptica e de luminescência realizadas no IFSC ao longo dos últimos anos ou provenientes da literatura especializada. Além disso, a simulação pretende elucidar a natureza dos processos fotofísicos em semicondutores orgânicos e testar a validade de teorias analíticas existentes, o que é essencial para a aplicação dessa classe de materiais como dispositivos no futuro. Especial atenção é dada na análise do comportamento temporal da difusão espectral em sistemas homogêneos em que o acoplamento dipolar na transferência de energia é realizado entre uma matriz de segmentos conjugados distribuídas aleatoriamente. A temperatura foi incorporada ao modelo. A comparação dos resultados da simulação com os resultados experimentais permitiu comprovar a validade do modelo proposto, do programa utilizado e entender melhor características de parâmetros não conhecidos em polímeros conjugados, como a influência da forma da distribuição energética dos estados eletrônicos e a distribuição e da temperatura no processo de migração do éxciton. Foi possível reproduzir com sucesso os espectros de luminescência e de absorção em polímeros conjugados descritos na literatura. Além disso, a simulação permitiu explicar resultados relacionados a sistemas poliméricos homogêneos anisotrópicos como polímeros estirados por uma tensão mecânica e materiais não homogêneos híbridos contendo polímero conjugado emissor de luz e nanopartículas. A maior contribuição foi o entendimento do efeito da temperatura nas propriedades de emissão como deslocamento espectral e alargamento homogêneo. Efeitos anômalos, como o deslocamento da emissão com a temperatura e o alcance da difusão com o tempo, foram explicados em termos da termalização do estado excitado e frustração da migração. Por fim, foi possível estudar os processos fotofísicos envolvidos em heteroestruturas orgânicas contendo gradiente energético que permitem o controle da migração direcional do éxciton e suas propriedades de emissão a partir dos processos de transferência de energia tipo Förster (dipolo-dipolo). O controle sobre os processos fotofísicos do polímero luminescente foi realizado através da alteração tanto da orientação como do tamanho de conjugação do material de polimérico. === In the present work, the Monte Carlo method and the direct numerical integration of the Master Equation were employed to simulate the excitation spectral diffusion process in light emitting polymeric systems. The methodology employed a competition among the internal intra-molecular relaxation, the inter-molecular incoherent energy transfer via Förster mechanism and the final process that may be a radiative emission or a non radiative relaxation through a suppression center. This works main objective is to compare the simulation results with the experiments of absorption, optical excitation and luminescence carried out in our group, throughout the last years or from the specialized literature. Moreover, the simulation intends to elucidate the nature of the photophysical processes in organic semiconductors and to test the validity of existing theories, what is essential for the application of this class of materials to devices in the future. Special attention is given to the analysis of the time dependence and the effect of temperature in homogenous systems, where the energy transfer and spectral diffusion were carried out through a matrix of randomly distributed conjugated segments coupled by dipole interaction. The comparison of the simulation results with the experimental ones allowed to prove the validity of the model, the computational program and to better understand characteristic of parameters for conjugated polymers which are still studied. Different energy distributions of electronic states, molecular position and orientation are used in order to simulate molecular configurations obtained by various sample preparation methodologies. With the simulation, it was possible to reproduce with success the experimental luminescence and absorption spectra in polymers conjugated described in literature. Besides, the simulation allowed to explain the exciton migration and properties related to temperature, such as the red shift and broadening of the spectral lines of conjugated polymer emission. The non exponential characteristics of the emissions time resolved intensity curves have been reproduced. The simulation was used to understand effects of temperature on the spectral diffusion as well. Anomalies related to spectral shift emission spectra with temperature and the mean diffusion length with time were explained with the thermalization and frustration of the migration at sufficiently low temperatures and at long relaxation times. Finally, it was possible to study the photophysical processes present in organic heterostructures having energy gradient, as well as the control of the properties of emission via changing the Förster type energy transfer processes between emitting polymers. The control over the photophysical process of the luminescent polymer was accomplished by changing both orientation and mean conjugation length of the polymer material.
|