Previsão do consumo de energia elétrica por setores através do modelo SARMAX

A previsão do consumo de energia elétrica do Brasil é muito importante para os órgãos reguladores do setor. Uma série de metodologias têm sido utilizadas para a projeção desse consumo. Destacam-se os modelos de regressão com dados em painel, modelos de cointegração e defasagem distribuída, modelos e...

Full description

Bibliographic Details
Main Author: Moura, Fernando Alves de
Other Authors: Montini, Alessandra de Ávila
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2011
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/12/12139/tde-15122011-180812/
id ndltd-usp.br-oai-teses.usp.br-tde-15122011-180812
record_format oai_dc
collection NDLTD
language pt
format Others
sources NDLTD
topic Consumo de energia elétrica
Econometria
Econometrics
Electric energy
Electric energy consumption - Forecasting
Energia elétrica
Forecasting (time series analysis)
Previsão (Análise de séries temporais)
spellingShingle Consumo de energia elétrica
Econometria
Econometrics
Electric energy
Electric energy consumption - Forecasting
Energia elétrica
Forecasting (time series analysis)
Previsão (Análise de séries temporais)
Moura, Fernando Alves de
Previsão do consumo de energia elétrica por setores através do modelo SARMAX
description A previsão do consumo de energia elétrica do Brasil é muito importante para os órgãos reguladores do setor. Uma série de metodologias têm sido utilizadas para a projeção desse consumo. Destacam-se os modelos de regressão com dados em painel, modelos de cointegração e defasagem distribuída, modelos estruturais de séries temporais e modelos de Box & Jenkins de séries temporais, dentre outros. Neste trabalho estimar-se um modelo de previsão do consumo comercial, industrial e residencial de energia brasileiro por meio de modelos SARMAX. Nesses modelos o consumo de energia pode ser estimado por meio de uma regressão linear múltipla considerando diversas variáveis macroeconômicas como variáveis explicativas. Os resíduos desse modelo são explicados por meio de um modelo de Box & Jenkins. Neste estudo realiza-se uma pesquisa bibliográfica sobre fatores que influenciam no consumo de energia elétrica e levantam-se variáveis proxies para prever este consumo no Brasil. Utiliza-se uma base de dados mensal no período entre Janeiro de 2003 e Setembro de 2010 para construção de cada um dos três modelos de previsão citados. Utilizase uma amostra de validação de Outubro de 2010 até Fevereiro de 2011. Realiza-se a avaliação dos modelos estimados em termos de adequação às premissas teóricas e ao desempenho nas medidas de acurácia MAPE, RMSE e coeficiente de determinação ajustado. Os modelos estimados para o consumo de energia elétrica dos setores comercial, industrial e residencial obtêm um MAPE de 2,05%, 1,09% e 1,27%; um RMSE de 144,13, 185,54 e 158,40; e um coeficiente de determinação ajustado de 95,91%, 93,98% e 96,03% respectivamente. Todos os modelos estimados atendem os pressupostos de normalidade, ausência de autocorrelação serial e ausência de heterocedasticidade condicionada dos resíduos. Os resultados confirmaram a viabilidade da utilização das variáveis macroeconômicas testadas para estimar o consumo de energia elétrica por setores e a viabilidade da metodologia para a previsão destas séries na amostra de dados selecionada. === The prediction of electricity consumption in Brazil is very important to the industry regulators. A number of methodologies have been used for the projection of this consumption. Noteworthy are the regression models with data in panel, co-integration and distributed lag models, time series structural models and Box & Jenkins time series models among others. In this work we intend to estimate a forecasting model of the Brazilian commercial, industrial and residential consumption of energy by means of SARMAX models. In these models the power consumption can be estimated by a multiple linear regression considering various macro-economic variables as explanatory variables. The residues of this model are explained by a Box & Jenkins model. In this study it is carried out a bibliographic research on factors that influence energy consumption and proxy variables are risen to predict the consumption in Brazil. The consumption of electricity is estimated for the commercial, industrial and residential sectors. It is used a monthly data base over the period between January 2003 and September 2010 for the construction of each of the three prediction models mentioned. It is used a validation sample from October 2010 to February 2011. It is carried out the assessment of the estimated models in terms of compliance with the theoretical premises and the performance on measures of accuracy MAPE, RMSE and adjusted determinant coefficient. The estimated models for the energy consumption of commercial, industrial and residential sectors obtain a MAPE of 2.05%, 1.09% and 1.27%; a RMSE of 144.13, 185.54 and 158.40; and a adjusted determinant coefficient of 95.91%, 93.98% and 96.03% respectively. All estimated models satisfy the assumptions of normality, absence of serial autocorrelation and absence of conditioned heteroscedasticity of the residues. The results confirmed the viability of the usage of the macroeconomic variables tested to estimate the energy consumption by sector and the viability of the methodology for the prediction of these series in the selected data sample.
author2 Montini, Alessandra de Ávila
author_facet Montini, Alessandra de Ávila
Moura, Fernando Alves de
author Moura, Fernando Alves de
author_sort Moura, Fernando Alves de
title Previsão do consumo de energia elétrica por setores através do modelo SARMAX
title_short Previsão do consumo de energia elétrica por setores através do modelo SARMAX
title_full Previsão do consumo de energia elétrica por setores através do modelo SARMAX
title_fullStr Previsão do consumo de energia elétrica por setores através do modelo SARMAX
title_full_unstemmed Previsão do consumo de energia elétrica por setores através do modelo SARMAX
title_sort previsão do consumo de energia elétrica por setores através do modelo sarmax
publisher Biblioteca Digitais de Teses e Dissertações da USP
publishDate 2011
url http://www.teses.usp.br/teses/disponiveis/12/12139/tde-15122011-180812/
work_keys_str_mv AT mourafernandoalvesde previsaodoconsumodeenergiaeletricaporsetoresatravesdomodelosarmax
AT mourafernandoalvesde forecastingelectricenergyconsumptionbysectorswithsarmaxmodel
_version_ 1719063641259507712
spelling ndltd-usp.br-oai-teses.usp.br-tde-15122011-1808122019-05-09T19:46:12Z Previsão do consumo de energia elétrica por setores através do modelo SARMAX Forecasting electric energy consumption by sectors with SARMAX model Moura, Fernando Alves de Consumo de energia elétrica Econometria Econometrics Electric energy Electric energy consumption - Forecasting Energia elétrica Forecasting (time series analysis) Previsão (Análise de séries temporais) A previsão do consumo de energia elétrica do Brasil é muito importante para os órgãos reguladores do setor. Uma série de metodologias têm sido utilizadas para a projeção desse consumo. Destacam-se os modelos de regressão com dados em painel, modelos de cointegração e defasagem distribuída, modelos estruturais de séries temporais e modelos de Box & Jenkins de séries temporais, dentre outros. Neste trabalho estimar-se um modelo de previsão do consumo comercial, industrial e residencial de energia brasileiro por meio de modelos SARMAX. Nesses modelos o consumo de energia pode ser estimado por meio de uma regressão linear múltipla considerando diversas variáveis macroeconômicas como variáveis explicativas. Os resíduos desse modelo são explicados por meio de um modelo de Box & Jenkins. Neste estudo realiza-se uma pesquisa bibliográfica sobre fatores que influenciam no consumo de energia elétrica e levantam-se variáveis proxies para prever este consumo no Brasil. Utiliza-se uma base de dados mensal no período entre Janeiro de 2003 e Setembro de 2010 para construção de cada um dos três modelos de previsão citados. Utilizase uma amostra de validação de Outubro de 2010 até Fevereiro de 2011. Realiza-se a avaliação dos modelos estimados em termos de adequação às premissas teóricas e ao desempenho nas medidas de acurácia MAPE, RMSE e coeficiente de determinação ajustado. Os modelos estimados para o consumo de energia elétrica dos setores comercial, industrial e residencial obtêm um MAPE de 2,05%, 1,09% e 1,27%; um RMSE de 144,13, 185,54 e 158,40; e um coeficiente de determinação ajustado de 95,91%, 93,98% e 96,03% respectivamente. Todos os modelos estimados atendem os pressupostos de normalidade, ausência de autocorrelação serial e ausência de heterocedasticidade condicionada dos resíduos. Os resultados confirmaram a viabilidade da utilização das variáveis macroeconômicas testadas para estimar o consumo de energia elétrica por setores e a viabilidade da metodologia para a previsão destas séries na amostra de dados selecionada. The prediction of electricity consumption in Brazil is very important to the industry regulators. A number of methodologies have been used for the projection of this consumption. Noteworthy are the regression models with data in panel, co-integration and distributed lag models, time series structural models and Box & Jenkins time series models among others. In this work we intend to estimate a forecasting model of the Brazilian commercial, industrial and residential consumption of energy by means of SARMAX models. In these models the power consumption can be estimated by a multiple linear regression considering various macro-economic variables as explanatory variables. The residues of this model are explained by a Box & Jenkins model. In this study it is carried out a bibliographic research on factors that influence energy consumption and proxy variables are risen to predict the consumption in Brazil. The consumption of electricity is estimated for the commercial, industrial and residential sectors. It is used a monthly data base over the period between January 2003 and September 2010 for the construction of each of the three prediction models mentioned. It is used a validation sample from October 2010 to February 2011. It is carried out the assessment of the estimated models in terms of compliance with the theoretical premises and the performance on measures of accuracy MAPE, RMSE and adjusted determinant coefficient. The estimated models for the energy consumption of commercial, industrial and residential sectors obtain a MAPE of 2.05%, 1.09% and 1.27%; a RMSE of 144.13, 185.54 and 158.40; and a adjusted determinant coefficient of 95.91%, 93.98% and 96.03% respectively. All estimated models satisfy the assumptions of normality, absence of serial autocorrelation and absence of conditioned heteroscedasticity of the residues. The results confirmed the viability of the usage of the macroeconomic variables tested to estimate the energy consumption by sector and the viability of the methodology for the prediction of these series in the selected data sample. Biblioteca Digitais de Teses e Dissertações da USP Montini, Alessandra de Ávila 2011-11-25 Dissertação de Mestrado application/pdf http://www.teses.usp.br/teses/disponiveis/12/12139/tde-15122011-180812/ pt Liberar o conteúdo para acesso público.