Estudo do eletrocardiograma sob uma abordagem matemática.

O eletrocardiograma transMITe informações com relação à passagem do pulso elétrico pelo coração e, conseqüentemente, do funcionamento deste. Desde o início da sua utilização, possibilitada pelo trabalho de Willem Einthoven criando a primeira máquina capaz de medir o pulso elétrico de forma não invas...

Full description

Bibliographic Details
Main Author: Melco, Tito Coutinho
Other Authors: Moscato, Lucas Antonio
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2006
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/3/3152/tde-14122006-113034/
Description
Summary:O eletrocardiograma transMITe informações com relação à passagem do pulso elétrico pelo coração e, conseqüentemente, do funcionamento deste. Desde o início da sua utilização, possibilitada pelo trabalho de Willem Einthoven criando a primeira máquina capaz de medir o pulso elétrico de forma não invasiva e com sensibilidade forte o bastante para ser capaz de produzir um gráfico proveitoso, o eletrocardiograma é muito utilizado para avaliação clínica de pacientes. Entretanto a evolução das máquinas que o descrevem não foi muito além do que o elaborado por Einthoven no início do século 20. As máquinas capazes de captar o eletrocardiograma se tornaram menores (até portáteis para algumas aplicações), gráficos passaram a ser disponibilizados em telas de vídeo (ao invés das fitas de papel) e, como maior evolução, as máquinas que observam o eletrocardiograma passaram a conseguir captar a ocorrência de um ciclo cardíaco com alta confiabilidade e, atualmente, passaram a medir também o parâmetro ST com precisão deliMITada (necessitando ajuda do operador para ajuste em alguns casos). É baseado nestes fatos que esta dissertação procura estudar algoritmos matemáticos, de forma mais focada nos modelos do impulso elétrico durante os ciclos cardíacos, e avaliar suas capacidades de interpretar parâmetros do ciclo de ECG de forma precisa e rápida para que o médico tenha prontamente os dados necessários para realizar a avaliação clínica do paciente. Em primeira análise foram estudados os algoritmos para detecção do pulso de eletrocardiograma (detecção da onda R), em seguida feito o janelamento da curva de ECG a fim de separar os ciclos cardíacos. A partir deste ponto foram analisados os modelos matemáticos gerados por equações polinomiais, Transformada de Fourier e Transformada wavelet. E, com o intuito de filtrar ruídos e gerar derivações não medidas, foi implementado um filtro de kalman em um modelo vetorial do eletrocardiograma. Para avaliar os resultados obtidos foram utilizados requisitos de desempenho declarados pelo FDA norte americano e pela norma européia IEC60601-2-51. Essas análises foram feitas através da utilização dos algoritmos gerados nas curvas provindas do banco de dados do PhisioNet. O método polinomial não foi considerado interessante na medida em que não possibilita gerar uma equação para um ciclo cardíaco, mas sim várias equações (uma para cada ponto do ciclo). Os demais métodos apresentaram melhor eficiência na medida em que foram capazes de gerar parâmetros com significado físico e possibilitando melhor caracterização de pontos importantes da curva do eletrocardiograma. === The electrocardiogram gives information related to the passage of an electric pulse through the heart and, therefore, to his state function. Since the beginning of electrocardiogram utilization, thanks to the work of Willem Einthoven building the first machine capable of measuring the electric pulse non-invasively and with sensitivity enough to be able to provide a profitable graph, it is widely used for clinical evaluation of patients. However the evolution of the machines that describes the electrocardiogram hadn´t much more advances since the elaborated by Einthoven in the beginning of the 20th century. They become smaller (even portable for some applications), the graphs are now displayed in video screens (instead of the paper strip) and, taking place as the biggest evolutions, machines that observes the electrocardiogram became able to recognize a cardiac cycle with high reliability and, more recently, became able to measure the ST parameter with liMITed precision (it needs the help of the operator to set specific measuring points in some cases). It is based in these facts that this dissertation looks for analyzing mathematic algorithms, more specifically the mathematic models of the electric impulse during the cardiac cycles, and evaluate their capacities to expound ECG parameters in a fast and reliable way in order to the physician receive promptly the data needed for his clinical evaluation of the patient. For the first step were analyzed some algorithms for electrocardiogram pulse detection (detection of R wave), in the following step were done the windowing of the ECG wave in order to separate the cardiac cycles. In this step were analyzed the mathematic models generated by polynomial equations, Fourier Transform and Wavelet Transform. And, in order to filter noises and generate leads not measure, it was implemented a kalman´s filter at a vector model. To evaluate the obtained results were used the requirements of performance given by north-american FDA and by the European rule IEC60601-2-51. These evaluations were done by executing the generated algorithms in the waves supplied by the databank PhisioNet. The polynomial method weren´t considered interesting because it weren´t able to generate an equation for the cardiac cycle, but many equations (one for each point of the cycle). The other methods showed a better efficiency since they were capable of generate parameters with physical meaning and being able to do a better characterization of the important points of the electrocardiogram wave.