Teste de hipóteses para grafos aleatórios com aplicação à neurociência

Recentemente, a teoria de grafos aleatórios vem sendo aplicada para modelar interações neurais do cérebro. Enquanto as propriedades dos grafos aleatórios vem sendo vastamente estudadas na literatura, o desenvolvimento de métodos de inferência estatística para essa classe de objetos tem recebido meno...

Full description

Bibliographic Details
Main Author: Cerqueira, Andressa
Other Authors: Leonardi, Florencia Graciela
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2014
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/45/45133/tde-12052014-223530/
Description
Summary:Recentemente, a teoria de grafos aleatórios vem sendo aplicada para modelar interações neurais do cérebro. Enquanto as propriedades dos grafos aleatórios vem sendo vastamente estudadas na literatura, o desenvolvimento de métodos de inferência estatística para essa classe de objetos tem recebido menos atenção. Nesse trabalho propomos um teste de hipóteses não paramétrico para testar se duas amostras de grafos aleatórios provém da mesma distribuição de probabilidade. Nós provamos como computar de maneira eficiente a estatística do teste e estudamos o desempenho do teste em dados simulados de grafos. A principal motivação deste trabalho é a aplicação do teste proposto em dados de eletroencefalograma. === The theory of random graphs has been successfully applied in recent years to model neural interactions in the brain. While the probabilistic properties of random graphs has been extensively studied in the literature, the development of statistical inference methods for this class of objects has received less attention. In this work we propose a non parametric test of hypotheses to decide if two samples of random graphs are originated from the same probability distribution. We show how to compute efficiently the test statistic and we study the performance of the test on simulated data. The main motivation of this work is to apply this test to analyze neural networks constructed from electroencephalographic data.