Summary: | Nesta dissertação, mostramos as primeiras aplicações do recém criado Anstz do Produto Matricial [8] na solução exata das matrizes de transferência associadas a modelos de vértices. A integrabilidade dos modelos é obtida diagonalizando-se a matriz de transferência diagonal-para-diagonal. Foram estudados duas classes de modelos. Na primeira delas introduzimos novos modelos de vértices, que denominamos de modelos de 5 vértices interagentes. Nestes modelos os vértices além das interações usuais de vizinhos próximos, dadas pela regra do gelo, possuem também interações de natureza repulsiva ao longo da diagonal. O famoso modelo de 6 vértices é obtido num limite particular deste novo modelo. O espectro da matriz de transferência, analogamente ao que acontece no ansatz de Bethe tradicional é dado em termos de solução de equações não lineares. Um estudo analítico e numérico destas equações foi feito para o modelo de 6 vértices que está contido nesta primeira classes de modelos. Tais resultados, juntamente com as idéias de invariância conforme, nos permitiram estudar o modelo em seu regime crítico. A segunda classe de modelos que estudamos foram os modelos de 10 vértices que satisfazem às regras do gelo. Obtivemos todos os possíveis modelos exatamente integráveis desta classe, reobtendo resultados da literatura bem como novos resultados. === In this dissertation we present the first application of a recent introduces Matrix Product Ansatz [8], in the exact solution of the transfer matrices associated to vertex models. The exact integrability is obtained through the diagonalization of the diagonal-to-diagonal transfer matrix. We studied two classes of models. In the first one we introduced new vertex models, that we call as interacting 5 vertex models. On these models beyond the nearest-neighbor interactions among the vertices, imposed by the ice rule, they also have repulsive interactions along the diagonal. The famous 6-vertex model is just a special case this class of models. The eigenspectrum of this transfer matrix, analogously as in the traditional Bethe ansatz, is obtained in terms of the roots of nonlinear equation. An analytical and numerical study of these equations we done on the first class. These results together with the machinery coming from conformal invariance allow us the study the model on its critical region. The second class of models we considered were the 10 vertex models that satisfy ice rules we obtained all the possible exact integrable models on this class, rederiving earlier results on the literature as were producing new ones.
|