Método autoconsistente de primeiros princípios spin polarizado de espaço direto

Neste trabalho, apresentamos um metodo baseado no formalismo lmto-asa (combinacao linear de orbitais muffin-tin na aproximacao de esfera atomica) e no metodo de recorrencia, que possibilita calculos autoconsistentes de primeiros principios com polarizacao de spin no espaco direto. Para testar o meto...

Full description

Bibliographic Details
Main Author: Duarte Junior, Jaime
Other Authors: Pessoa, Sonia Frota
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 1991
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/43/43133/tde-08112013-154808/
Description
Summary:Neste trabalho, apresentamos um metodo baseado no formalismo lmto-asa (combinacao linear de orbitais muffin-tin na aproximacao de esfera atomica) e no metodo de recorrencia, que possibilita calculos autoconsistentes de primeiros principios com polarizacao de spin no espaco direto. Para testar o metodo, calculamos a estrutura eletronica dos sistemas FENI IND.5 (ferromagnetico) e FEMN (antiferromagnetico). Os resultados mostraram boa concordancia com os obtidos por outros metodos. A fim de ilustrar o metodo aplicado a um sistema nao-periodico, calculamos a estrutura eletronica e a distribuicao local de momentos magneticos para um sistema constituido de uma impureza substitucional de FE numa matriz CU. Nossos resultados para momento magnetico e densidade de estados local para o sitio de impureza, concordam bem com resultados via metodo kkr-funcao de gren e experimentais, da literatura. O metodo aqui descrito e bastante flexivel e e muito util na obtencao de momentos magneticos locais em sistemas complexos === In this work we present an approach based on the linear muffin-tin orbital (LMTO) formalism in the atomic sphere approximation (ASA) and on the recursion method which allows us to perform first principies calculations in real space. To test the method, we obtain the electronic structure of ferromagnetic FeNi3 e antiferromagnetic FeMn. The results compare well with those obtained by others methods. To illustrate the scheme applied to a non-periodic system, we calculate the electronic structure and local magnetic moments for a substitutional impurity of Fe in a Cu host. Our results for the magnetic moment and local density of states at the Fe site, agree well with KKR-Green functions and experimental results in the literature. The scheme described here is extremely flexible and is very useful to obtain local distribuition of magnetic moments in complex metallic systems.