Summary: | A automaçãoo agrícola tem se mostrado fator importante no desenvolvimento da produção nacional nas últimas décadas. A medição e controle das condições internas de casas de vegetação não são, muitas vezes, de fácil implementação e custo viável. Estudos e experiências nesta área procuram criar modelos que, utilizando-se de sistemas computacionais, estimem o comportamento de grandezas internas a uma casa de vegetação a partir da medida de grandezas externas. O objetivo deste trabalho é propor e avaliar a modelagem ambiental de uma casa de vegetação utilizando rede de osciladores de Van Der Pol. A utilização de modelos confiáveis na previsão das condições internas de uma casa de vegetação é importante para melhorar a produtividade agrícola. A partir da literatura, foram levantados e estudados o modelo analítico e o modelo baseado em lógica nebulosa para a previsão da umidade relativa do ar e da temperatura interna da casa de vegetação. Um modelo baseado em rede neural multicamadas foi implementado como uma primeira alternativa. A substituição das funções de ativação comumente usadas neste tipo de modelo, pelas funções do oscilador de Van Der Pol, permite melhores resultados para processos não lineares e levou a uma satisfatória redução dos erros das estimativas, sem comprometer seu desempenho computacional. Os dados observados experimentalmente e estimados pelos modelos foram comparados a partir de critérios estatísticos. O erro relativo aos valores medidos para a grandeza temperatura variou entre 0,0% e 1,5%, enquanto o erro relativo aos valores medidos para a grandeza umidade relativa do ar variou entre 0,5% e 6,9%. O erro relativo aos valores medidos para ambas as grandezas apresentou um comportamento melhor do modelo proposto em relação aos modelos analíticos, baseado em lógica nebulosa e baseado em redes neurais. O desempenho computacional médio do modelo com osciladores de Van Der Pol, se comparado com o modelo baseado em redes neurais, considerando o número de iterações, degradou em 7,8%. Os resultados demonstram que a modelagem utilizando rede de osciladores de Van Der Pol é viável para a previsão de grandezas internas de uma casa de vegetação. === Agricultural automation is an important area in the development of Brazilian production in recent years. Often, measurement and control of the internal conditions of greenhouses are not easy to implement at a reasonable cost. Researches in this area look for models using computational theory, foreseeing the behavior of internal variables of a greenhouse from the measurement of external variables. The objective of this work is to consider and evaluate the environmental modeling of a greenhouse using a Van der Pol oscillator network. The use of trustworthy models for forecasting internal conditions of a greenhouse is important for improving agricultural productivity. Some researches present an analytical and fuzzy model used to forecast the relative humidity and internal temperature of a greenhouse. As first approach, a model based on a multilayer neural network was implemented. The neural network activation functions change for a Van Der Pol oscillator can produce better results when modeling non-linear process, and in this case, reduced estimate errors without compromising its computational performance. The measured experimental data and the estimated data were compared with statistical criteria. The relative error for the measured values of temperature varied from 0.0% through 1.5%, while the relative error of the measured values for the relative humidity varied from 0.5% through 6.9%. The relative error for both measured variables presented better behavior for the model considered in relation to the analytic, fuzzy, and neural network models. The average computational performance of the model with Van Der Pol oscillators, when compared with the neural network model, considering the number of iterations decreased approximately 7.8%. The results demonstrate that modeling based on Van der Pol oscillators is viable for forecasting the internal variables of a greenhouse.
|