Técnicas de transferência de aprendizagem aplicadas a modelos QSAR para regressão
Para desenvolver um novo medicamento, pesquisadores devem analisar os alvos biológicos de uma dada doença, descobrir e desenvolver candidatos a fármacos para este alvo biológico, realizando em paralelo, testes em laboratório para validar a eficiência e os efeitos colaterais da substância química. O...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | pt |
Published: |
Biblioteca Digitais de Teses e Dissertações da USP
2018
|
Subjects: | |
Online Access: | http://www.teses.usp.br/teses/disponiveis/100/100131/tde-07062018-120939/ |
id |
ndltd-usp.br-oai-teses.usp.br-tde-07062018-120939 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-usp.br-oai-teses.usp.br-tde-07062018-1209392019-05-09T18:26:09Z Técnicas de transferência de aprendizagem aplicadas a modelos QSAR para regressão Transfer learning techniques applied to QSAR models for regression Simões, Rodolfo da Silva Aprendizagem de máquina Chemoinformatics Machine learning Modelos QSAR QSAR models Quimioinformática Regressão por vetores suporte Support vector regression Transfer learning Transferência de aprendizagem Para desenvolver um novo medicamento, pesquisadores devem analisar os alvos biológicos de uma dada doença, descobrir e desenvolver candidatos a fármacos para este alvo biológico, realizando em paralelo, testes em laboratório para validar a eficiência e os efeitos colaterais da substância química. O estudo quantitativo da relação estrutura-atividade (QSAR) envolve a construção de modelos de regressão que relacionam um conjunto de descritores de um composto químico e a sua atividade biológica com relação a um ou mais alvos no organismo. Os conjuntos de dados manipulados pelos pesquisadores para análise QSAR são caracterizados geralmente por um número pequeno de instâncias e isso torna mais complexa a construção de modelos preditivos. Nesse contexto, a transferência de conhecimento utilizando informações de outros modelos QSAR\'s com mais dados disponíveis para o mesmo alvo biológico seria desejável, diminuindo o esforço e o custo do processo para gerar novos modelos de descritores de compostos químicos. Este trabalho apresenta uma abordagem de transferência de aprendizagem indutiva (por parâmetros), tal proposta baseia-se em uma variação do método de Regressão por Vetores Suporte adaptado para transferência de aprendizagem, a qual é alcançada ao aproximar os modelos gerados separadamente para cada tarefa em questão. Considera-se também um método de transferência de aprendizagem por instâncias, denominado de TrAdaBoost. Resultados experimentais mostram que as abordagens de transferência de aprendizagem apresentam bom desempenho quando aplicadas a conjuntos de dados de benchmark e a conjuntos de dados químicos To develop a new medicament, researches must analyze the biological targets of a given disease, discover and develop drug candidates for this biological target, performing in parallel, biological tests in laboratory to validate the effectiveness and side effects of the chemical substance. The quantitative study of structure-activity relationship (QSAR) involves building regression models that relate a set of descriptors of a chemical compound and its biological activity with respect to one or more targets in the organism. Datasets manipulated by researchers to QSAR analysis are generally characterized by a small number of instances and this makes it more complex to build predictive models. In this context, the transfer of knowledge using information other\'s QSAR models with more data available to the same biological target would be desirable, nince its reduces the effort and cost to generate models of chemical descriptors. This work presents an inductive learning transfer approach (by parameters), such proposal is based on a variation of the Vector Regression method Adapted support for learning transfer, which is achieved by approaching the separately generated models for each task. It is also considered a method of learning transfer by instances, called TrAdaBoost. Experimental results show that learning transfer approaches perform well when applied to some datasets of benchmark and dataset chemical Biblioteca Digitais de Teses e Dissertações da USP Oliveira, Patrícia Rufino 2018-04-10 Dissertação de Mestrado application/pdf http://www.teses.usp.br/teses/disponiveis/100/100131/tde-07062018-120939/ pt Liberar o conteúdo para acesso público. |
collection |
NDLTD |
language |
pt |
format |
Others
|
sources |
NDLTD |
topic |
Aprendizagem de máquina Chemoinformatics Machine learning Modelos QSAR QSAR models Quimioinformática Regressão por vetores suporte Support vector regression Transfer learning Transferência de aprendizagem |
spellingShingle |
Aprendizagem de máquina Chemoinformatics Machine learning Modelos QSAR QSAR models Quimioinformática Regressão por vetores suporte Support vector regression Transfer learning Transferência de aprendizagem Simões, Rodolfo da Silva Técnicas de transferência de aprendizagem aplicadas a modelos QSAR para regressão |
description |
Para desenvolver um novo medicamento, pesquisadores devem analisar os alvos biológicos de uma dada doença, descobrir e desenvolver candidatos a fármacos para este alvo biológico, realizando em paralelo, testes em laboratório para validar a eficiência e os efeitos colaterais da substância química. O estudo quantitativo da relação estrutura-atividade (QSAR) envolve a construção de modelos de regressão que relacionam um conjunto de descritores de um composto químico e a sua atividade biológica com relação a um ou mais alvos no organismo. Os conjuntos de dados manipulados pelos pesquisadores para análise QSAR são caracterizados geralmente por um número pequeno de instâncias e isso torna mais complexa a construção de modelos preditivos. Nesse contexto, a transferência de conhecimento utilizando informações de outros modelos QSAR\'s com mais dados disponíveis para o mesmo alvo biológico seria desejável, diminuindo o esforço e o custo do processo para gerar novos modelos de descritores de compostos químicos. Este trabalho apresenta uma abordagem de transferência de aprendizagem indutiva (por parâmetros), tal proposta baseia-se em uma variação do método de Regressão por Vetores Suporte adaptado para transferência de aprendizagem, a qual é alcançada ao aproximar os modelos gerados separadamente para cada tarefa em questão. Considera-se também um método de transferência de aprendizagem por instâncias, denominado de TrAdaBoost. Resultados experimentais mostram que as abordagens de transferência de aprendizagem apresentam bom desempenho quando aplicadas a conjuntos de dados de benchmark e a conjuntos de dados químicos === To develop a new medicament, researches must analyze the biological targets of a given disease, discover and develop drug candidates for this biological target, performing in parallel, biological tests in laboratory to validate the effectiveness and side effects of the chemical substance. The quantitative study of structure-activity relationship (QSAR) involves building regression models that relate a set of descriptors of a chemical compound and its biological activity with respect to one or more targets in the organism. Datasets manipulated by researchers to QSAR analysis are generally characterized by a small number of instances and this makes it more complex to build predictive models. In this context, the transfer of knowledge using information other\'s QSAR models with more data available to the same biological target would be desirable, nince its reduces the effort and cost to generate models of chemical descriptors. This work presents an inductive learning transfer approach (by parameters), such proposal is based on a variation of the Vector Regression method Adapted support for learning transfer, which is achieved by approaching the separately generated models for each task. It is also considered a method of learning transfer by instances, called TrAdaBoost. Experimental results show that learning transfer approaches perform well when applied to some datasets of benchmark and dataset chemical |
author2 |
Oliveira, Patrícia Rufino |
author_facet |
Oliveira, Patrícia Rufino Simões, Rodolfo da Silva |
author |
Simões, Rodolfo da Silva |
author_sort |
Simões, Rodolfo da Silva |
title |
Técnicas de transferência de aprendizagem aplicadas a modelos QSAR para regressão |
title_short |
Técnicas de transferência de aprendizagem aplicadas a modelos QSAR para regressão |
title_full |
Técnicas de transferência de aprendizagem aplicadas a modelos QSAR para regressão |
title_fullStr |
Técnicas de transferência de aprendizagem aplicadas a modelos QSAR para regressão |
title_full_unstemmed |
Técnicas de transferência de aprendizagem aplicadas a modelos QSAR para regressão |
title_sort |
técnicas de transferência de aprendizagem aplicadas a modelos qsar para regressão |
publisher |
Biblioteca Digitais de Teses e Dissertações da USP |
publishDate |
2018 |
url |
http://www.teses.usp.br/teses/disponiveis/100/100131/tde-07062018-120939/ |
work_keys_str_mv |
AT simoesrodolfodasilva tecnicasdetransferenciadeaprendizagemaplicadasamodelosqsarpararegressao AT simoesrodolfodasilva transferlearningtechniquesappliedtoqsarmodelsforregression |
_version_ |
1719054865200578560 |