Summary: | O presente trabalho desenvolve uma formulação do Método dos Elementos de Contorno para análise de problemas tridimensionais de fraturamento no regime transiente. Utilizam-se as soluções fundamentais da elastostática para obter a matriz de massa, empregando-se o Método da Reciprocidade Dual e a discretização do domínio por células tridimensionais. Para a integração no tempo são utilizados os algoritmos de Newmark e Houbolt. O fenômeno do fraturamento é abordado através da consideração de um campo de tensões iniciais, introduzindo-se o conceito de dipolos de tensão. Os tensores desenvolvidos que se relacionam aos dipolos, derivados das soluções fundamentais, são também apresentados. É utilizado o modelo de fratura coesiva. O contorno é discretizado utilizando-se elementos triangulares planos com aproximação linear, e elementos constantes para a superfície fictícia de fraturamento. São feitas várias aplicações cujos resultados obtidos confirmam a importância e a adequação da formulação apresentada para os problemas propostos. === This work presents a Boundary Element Method (BEM) formulation for analysis of three-dimensional fracture mechanics transient problems. Elastostatics fundamental solutions are considered in order to obtain the mass matrix, using both Dual Reciprocity Method and three-dimensional cell discretization. Newmark and Houbolt algorithms are employed to evaluate the time integrals. The fracture effects are captured by using dipoles of stresses, derived from an initial stress field. The tensors related to those dipoles, developed in the present work, are presented. The cohesive crack is the adopted model. Body boundary is discretized though linear flat triangular elements and the fracture surfaces are approximated by constant flat triangular elements. Some applications are processed to show the efficiency of presented BEM formulations.
|