Decomposição de grafos em caminhos

Uma decomposição de um grafo G é um conjunto D = {H_1,... , H_k } de subgrafos de G dois-a-dois aresta-disjuntos que cobre o conjunto das arestas de G. Se H_i é isomorfo a um grafo fixo H, para 1<=i<=k, então dizemos que D é uma H-decomposição de G. Neste trabalho, estudamos o caso em que H é...

Full description

Bibliographic Details
Main Author: Botler, Fábio Happ
Other Authors: Wakabayashi, Yoshiko
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2016
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/45/45134/tde-06092016-143525/
id ndltd-usp.br-oai-teses.usp.br-tde-06092016-143525
record_format oai_dc
spelling ndltd-usp.br-oai-teses.usp.br-tde-06092016-1435252019-05-09T18:17:57Z Decomposição de grafos em caminhos Decomposition of graphs into paths Botler, Fábio Happ Alta aresta-conexidade Decomposição em caminhos Grafo Grafo regular Graph Highly edge-connected Path decomposition Regular graph Uma decomposição de um grafo G é um conjunto D = {H_1,... , H_k } de subgrafos de G dois-a-dois aresta-disjuntos que cobre o conjunto das arestas de G. Se H_i é isomorfo a um grafo fixo H, para 1<=i<=k, então dizemos que D é uma H-decomposição de G. Neste trabalho, estudamos o caso em que H é um caminho de comprimento fixo. Para isso, primeiramente decompomos o grafo dado em trilhas, e depois fazemos uso de um lema de desemaranhamento, que nos permite transformar essa decomposição em trilhas numa decomposição somente em caminhos. Com isso, obtemos resultados para três conjecturas sobre H-decomposição de grafos no caso em que H=P_\\ell é o caminho de comprimento \\ell. Dois desses resultados resolvem versões fracas das Conjecturas de Kouider e Lonc (1999) e de Favaron, Genest e Kouider (2010), ambas para grafos regulares. Provamos que, para todo inteiro positivo \\ell, (i) existe um inteiro positivo m_0 tal que se G é um grafo 2m\\ell-regular com m>=m_0, então G admite uma P_\\ell-decomposição; (ii) se \\ell é ímpar, existe um inteiro positivo m_0 tal que se G é um grafo m\\ell-regular com m>=m_0, e G contém um m-fator, então G admite uma P_\\ell-decomposição. O terceiro resultado diz respeito a grafos altamente aresta- conexos: existe um inteiro positivo k_\\ell tal que se G é um grafo k_\\ell-aresta-conexo cujo número de arestas é divisível por \\ell, então G admite uma P_\\ell-decomposição. Esse resultado prova que a Decomposition Conjecture de Barát e Thomassen (2006), formulada para árvores, é verdadeira para caminhos. A decomposition of a graph G is a set D = {H_1,...,H_k} of pairwise edge-disjoint subgraphs of G that cover the set of edges of G. If H_i is isomorphic to a fixed graph H, for 1<=i<=k, then we say that D is an H-decomposition of G. In this work, we study the case where H is a path of fixed length. For that, we first decompose the given graph into trails, and then we use a disentangling lemma, that allows us to transform this decomposition into one consisting only of paths. With this approach, we tackle three conjectures on H-decomposition of graphs and obtain results for the case H=P_\\ell is the path of length \\ell. Two of these results solve weakenings of a conjecture of Kouider and Lonc (1999) and a conjecture of Favaron, Genest and Kouider (2010), both for regular graphs. We prove that, for every positive integer \\ell, (i) there is a positive integer m_0 such that, if G is a 2m\\ell-regular graph with m>=m_0, then G admits a P_\\ell-decomposition; (ii) if \\ell is odd, there is a positive integer m_0 such that, if G is an m\\ell-regular graph with m>=m_0 containing an m-factor, then G admits a P_\\ell-decomposition. The third result concerns highly edge-connected graphs: there is a positive integer k_\\ell such that if G is a k_\\ell-edge-connected graph whose number of edges is divisible by \\ell, then G admits a P_\\ell-decomposition. This result verifies for paths the Decomposition Conjecture of Barát and Thomassen (2006), on trees. Biblioteca Digitais de Teses e Dissertações da USP Wakabayashi, Yoshiko 2016-02-24 Tese de Doutorado application/pdf http://www.teses.usp.br/teses/disponiveis/45/45134/tde-06092016-143525/ pt Liberar o conteúdo para acesso público.
collection NDLTD
language pt
format Others
sources NDLTD
topic Alta aresta-conexidade
Decomposição em caminhos
Grafo
Grafo regular
Graph
Highly edge-connected
Path decomposition
Regular graph
spellingShingle Alta aresta-conexidade
Decomposição em caminhos
Grafo
Grafo regular
Graph
Highly edge-connected
Path decomposition
Regular graph
Botler, Fábio Happ
Decomposição de grafos em caminhos
description Uma decomposição de um grafo G é um conjunto D = {H_1,... , H_k } de subgrafos de G dois-a-dois aresta-disjuntos que cobre o conjunto das arestas de G. Se H_i é isomorfo a um grafo fixo H, para 1<=i<=k, então dizemos que D é uma H-decomposição de G. Neste trabalho, estudamos o caso em que H é um caminho de comprimento fixo. Para isso, primeiramente decompomos o grafo dado em trilhas, e depois fazemos uso de um lema de desemaranhamento, que nos permite transformar essa decomposição em trilhas numa decomposição somente em caminhos. Com isso, obtemos resultados para três conjecturas sobre H-decomposição de grafos no caso em que H=P_\\ell é o caminho de comprimento \\ell. Dois desses resultados resolvem versões fracas das Conjecturas de Kouider e Lonc (1999) e de Favaron, Genest e Kouider (2010), ambas para grafos regulares. Provamos que, para todo inteiro positivo \\ell, (i) existe um inteiro positivo m_0 tal que se G é um grafo 2m\\ell-regular com m>=m_0, então G admite uma P_\\ell-decomposição; (ii) se \\ell é ímpar, existe um inteiro positivo m_0 tal que se G é um grafo m\\ell-regular com m>=m_0, e G contém um m-fator, então G admite uma P_\\ell-decomposição. O terceiro resultado diz respeito a grafos altamente aresta- conexos: existe um inteiro positivo k_\\ell tal que se G é um grafo k_\\ell-aresta-conexo cujo número de arestas é divisível por \\ell, então G admite uma P_\\ell-decomposição. Esse resultado prova que a Decomposition Conjecture de Barát e Thomassen (2006), formulada para árvores, é verdadeira para caminhos. === A decomposition of a graph G is a set D = {H_1,...,H_k} of pairwise edge-disjoint subgraphs of G that cover the set of edges of G. If H_i is isomorphic to a fixed graph H, for 1<=i<=k, then we say that D is an H-decomposition of G. In this work, we study the case where H is a path of fixed length. For that, we first decompose the given graph into trails, and then we use a disentangling lemma, that allows us to transform this decomposition into one consisting only of paths. With this approach, we tackle three conjectures on H-decomposition of graphs and obtain results for the case H=P_\\ell is the path of length \\ell. Two of these results solve weakenings of a conjecture of Kouider and Lonc (1999) and a conjecture of Favaron, Genest and Kouider (2010), both for regular graphs. We prove that, for every positive integer \\ell, (i) there is a positive integer m_0 such that, if G is a 2m\\ell-regular graph with m>=m_0, then G admits a P_\\ell-decomposition; (ii) if \\ell is odd, there is a positive integer m_0 such that, if G is an m\\ell-regular graph with m>=m_0 containing an m-factor, then G admits a P_\\ell-decomposition. The third result concerns highly edge-connected graphs: there is a positive integer k_\\ell such that if G is a k_\\ell-edge-connected graph whose number of edges is divisible by \\ell, then G admits a P_\\ell-decomposition. This result verifies for paths the Decomposition Conjecture of Barát and Thomassen (2006), on trees.
author2 Wakabayashi, Yoshiko
author_facet Wakabayashi, Yoshiko
Botler, Fábio Happ
author Botler, Fábio Happ
author_sort Botler, Fábio Happ
title Decomposição de grafos em caminhos
title_short Decomposição de grafos em caminhos
title_full Decomposição de grafos em caminhos
title_fullStr Decomposição de grafos em caminhos
title_full_unstemmed Decomposição de grafos em caminhos
title_sort decomposição de grafos em caminhos
publisher Biblioteca Digitais de Teses e Dissertações da USP
publishDate 2016
url http://www.teses.usp.br/teses/disponiveis/45/45134/tde-06092016-143525/
work_keys_str_mv AT botlerfabiohapp decomposicaodegrafosemcaminhos
AT botlerfabiohapp decompositionofgraphsintopaths
_version_ 1719053998731821056