Prescrição de singularidades analíticas de soluções de uma classe de campos vetoriais no toro
Seja L \'= PONTO\' \'\\partial IND. t\' + [\'a(t) + ib (t)] \'\\partial IND. x\' um operador diferencial parcial agindo em distribuições definidas no toro bidimensional \'T POT. 2\'; onde a; b : \'T POT. 1\' \' SETA\' R são funções...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | pt |
Published: |
Biblioteca Digitais de Teses e Dissertações da USP
2011
|
Subjects: | |
Online Access: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06062011-144300/ |
id |
ndltd-usp.br-oai-teses.usp.br-tde-06062011-144300 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-usp.br-oai-teses.usp.br-tde-06062011-1443002019-05-09T18:15:20Z Prescrição de singularidades analíticas de soluções de uma classe de campos vetoriais no toro Prescribing analytic singularities for solutions of a class of vector fields on the torus Beezão, Andreza Cristina Analytic singular support Global analytic hipoellipticity Hipoeliticidade analítica global Singular solution Solução singular Suporte singular analítico Seja L \'= PONTO\' \'\\partial IND. t\' + [\'a(t) + ib (t)] \'\\partial IND. x\' um operador diferencial parcial agindo em distribuições definidas no toro bidimensional \'T POT. 2\'; onde a; b : \'T POT. 1\' \' SETA\' R são funções analíticas reais. Suponhamos que L não ée globalmente analítico hipoelítico e b não é uma função identicamente nula. O objetivo principal deste trabalho é o estudo das soluções singulares de L; através da natureza e da localização das suas singularidades. Com este intuito, primeiramente abordaremos a teoria das séries parciais de Fourier, que nos permitem relacionar o comportamento assintótico dos coeficientes parciais de Fourier de um dado objeto com a regularidade do mesmo Let L \'= PONTO\' \'\\partial ind. t\' + [ a (t) + ib (t) ] \'\\partial IND. x\' be a partial differential operator acting on distributions on the two-torus \'T POT. 2\' , where a; b : \'T POT. 1\' \'ARROW\' R are real analytic functions. Assume that L is not a globally analytic hypoelliptic operator and b is not identically zero. The main goal of this work is the study of the singular solutions of L; by means of the nature and localization of their singularities. To this end, we first study the theory of partial Fourier series, which are a useful tool to analyze the regularity of a given distribution Biblioteca Digitais de Teses e Dissertações da USP Zani, Sergio Luis 2011-05-04 Dissertação de Mestrado application/pdf http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06062011-144300/ pt Liberar o conteúdo para acesso público. |
collection |
NDLTD |
language |
pt |
format |
Others
|
sources |
NDLTD |
topic |
Analytic singular support Global analytic hipoellipticity Hipoeliticidade analítica global Singular solution Solução singular Suporte singular analítico |
spellingShingle |
Analytic singular support Global analytic hipoellipticity Hipoeliticidade analítica global Singular solution Solução singular Suporte singular analítico Beezão, Andreza Cristina Prescrição de singularidades analíticas de soluções de uma classe de campos vetoriais no toro |
description |
Seja L \'= PONTO\' \'\\partial IND. t\' + [\'a(t) + ib (t)] \'\\partial IND. x\' um operador diferencial parcial agindo em distribuições definidas no toro bidimensional \'T POT. 2\'; onde a; b : \'T POT. 1\' \' SETA\' R são funções analíticas reais. Suponhamos que L não ée globalmente analítico hipoelítico e b não é uma função identicamente nula. O objetivo principal deste trabalho é o estudo das soluções singulares de L; através da natureza e da localização das suas singularidades. Com este intuito, primeiramente abordaremos a teoria das séries parciais de Fourier, que nos permitem relacionar o comportamento assintótico dos coeficientes parciais de Fourier de um dado objeto com a regularidade do mesmo === Let L \'= PONTO\' \'\\partial ind. t\' + [ a (t) + ib (t) ] \'\\partial IND. x\' be a partial differential operator acting on distributions on the two-torus \'T POT. 2\' , where a; b : \'T POT. 1\' \'ARROW\' R are real analytic functions. Assume that L is not a globally analytic hypoelliptic operator and b is not identically zero. The main goal of this work is the study of the singular solutions of L; by means of the nature and localization of their singularities. To this end, we first study the theory of partial Fourier series, which are a useful tool to analyze the regularity of a given distribution |
author2 |
Zani, Sergio Luis |
author_facet |
Zani, Sergio Luis Beezão, Andreza Cristina |
author |
Beezão, Andreza Cristina |
author_sort |
Beezão, Andreza Cristina |
title |
Prescrição de singularidades analíticas de soluções de uma classe de campos vetoriais no toro |
title_short |
Prescrição de singularidades analíticas de soluções de uma classe de campos vetoriais no toro |
title_full |
Prescrição de singularidades analíticas de soluções de uma classe de campos vetoriais no toro |
title_fullStr |
Prescrição de singularidades analíticas de soluções de uma classe de campos vetoriais no toro |
title_full_unstemmed |
Prescrição de singularidades analíticas de soluções de uma classe de campos vetoriais no toro |
title_sort |
prescrição de singularidades analíticas de soluções de uma classe de campos vetoriais no toro |
publisher |
Biblioteca Digitais de Teses e Dissertações da USP |
publishDate |
2011 |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06062011-144300/ |
work_keys_str_mv |
AT beezaoandrezacristina prescricaodesingularidadesanaliticasdesolucoesdeumaclassedecamposvetoriaisnotoro AT beezaoandrezacristina prescribinganalyticsingularitiesforsolutionsofaclassofvectorfieldsonthetorus |
_version_ |
1719053726723866624 |