Decaimento dos autovalores de operadores integrais gerados por séries de potências

O principal objetivo deste trabalho e descrever o decaimento dos autovalores de operadores integrais gerados por núcleos definidos por séries de potências, mediante hipóteses sobre os coeficientes na série que representa o núcleo gerador. A análise e implementada em duas frentes: inicialmente, consi...

Full description

Bibliographic Details
Main Author: Sant\'Anna, Douglas Azevedo
Other Authors: Menegatto, Valdir Antonio
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2013
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06052013-103553/
Description
Summary:O principal objetivo deste trabalho e descrever o decaimento dos autovalores de operadores integrais gerados por núcleos definidos por séries de potências, mediante hipóteses sobre os coeficientes na série que representa o núcleo gerador. A análise e implementada em duas frentes: inicialmente, consideramos o caso em que o núcleo esta definido sobre a esfera unitária de \'R POT. m+1\', estendendo posteriormente a análise, para o caso da bola unitária do mesmo espaço. Em seguida, visando primordialmente o caso em que o núcleo esta definido sobre a esfera unitaria em \'C POT. m+1\', abordamos um caso mais geral, aquele no qual o núcleo esta definido por uma série de funções \'L POT. 2\'(X, u)-ortogonais, sendo (X, u) um espaço de medida arbitrário === The main target in this work is to deduce eigenvalue decay for integral operators generated by power series kernels, under general assumptions on the coefficients in the series representing the kernel. The analysis is twofold: firstly, we consider generating kernels defined on the unit sphere in \'R POT. m+1\', replacing the sphere with the unit ball in a subsequent stage. Secondly, we consider generating kernels defined on a general measure space (X, u) and possessing an \'L POT. 2\'(X, u)-orthogonal expansion there, an attempt to cover the case in which the kernel is defined on the unit sphere in \'C POT. m+1\'