Summary: | A medição de distâncias sempre foi uma das atividades mais básicas e importantes da engenharia. Existem diversas formas, métodos, equipamentos que são utilizados para se obter medidas com os mais variados graus de acurácia. Com o aumento da tecnologia, a determinação de distâncias em 3D tem-se tornado cada vez mais importante, favorecendo equipamentos de fácil manuseio e boa precisão. Em especial, a determinação da localização espacial vem ganhando ainda mais importância nas indústrias que estão começando a utilizar robôs não mais para o simples deslocamento de peças, mas para a execução de tarefas mais complexas, de controle mais sofisticado. O presente trabalho tem por objetivo o desenvolvimento de um sistema a ser utilizado para a determinação de deslocamentos espaciais de um retro-refletor através de duas estações de rastreamento. Cada uma delas, composta basicamente por um sensor de quadrantes, um divisor de feixes e dois espelhos planos com eixos de rotação dispostos ortogonalmente entre si, emite um feixe laser contínuo direcionado ao retro-refletor. O feixe laser emitido por cada estação de rastreamento foi modelado como reta cuja equação é função essencialmente dos ângulos dos espelhos. Foram realizados dois experimentos visando a comparação entre os resultados obtidos com a utilização de motores de corrente continua e de galvanômetros para movimentação dos espelhos. No primeiro, a posição angular dos espelhos é conhecida através de encoders, no segundo, ela é determinada através de sinais emitidos pela placa controladora do galvanômetro. Finalmente, com o conhecimento da posição relativa entre as duas estações de rastreamento e do direcionamento dos feixes laser, a posição do retro-refletor no espaço é calculada por triangulação. === The measurement of distances has always been one of the most basic and important activities of engineering. It can be achieved in several ways and by many methods, and there is a variety of equipment that may be used to obtain measurements with different levels of accuracy. With technological development, the measurement of distances in 3D has become more and more common, favoring equipment with ease of handling and high precision. Specially, spatial positioning has become even more important in industries that are beginning to use robots not just to move pieces, but to perform more complex tasks, utilizing more sophisticated control techniques. The present work deals with the development of a two tracking station system to be used in the spatial displacement measurement of a retroreflector. Each one, consisting basically of a quadrant detector, a beam splitter, and two flat mirrors that can be rotated in orthogonal directions, emits a continuous laser beam directed to the retroreflector. The laser beam emitted by each of the tracking stations is considered a straight line the equation of which depends primary on the exact mirror angles. Two experiments, one using DC motors and the other galvanometers to drive the mirrors, were executed in other to compare the results. In the first, the angles are known through the use of encoders, and in the second, they are determined by signals generated in the galvanometer controllers (drives). Finally, with the knowledge of the tracking station positions and laser beam directions, the retroreflector space position can be calculated using triangulation.
|