Non-degeneracy of polynomial maps with respect to global Newton polyhedra

Let F : Kn → Kp be a polynomial map, where K = R or C. Motivated by the characterization of the integral closure of ideals in the ring On by means of analytic inequalities proven by Lejeune-Teissier [46], we define the set Sp(F) of special polynomials with respect to F. The set Sp(F) can...

Full description

Bibliographic Details
Main Author: Huarcaya, Jorge Alberto Coripaco
Other Authors: Saia, Marcelo José
Format: Others
Language:en
Published: Biblioteca Digitais de Teses e Dissertações da USP 2015
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/55/55135/tde-04122015-094201/
id ndltd-usp.br-oai-teses.usp.br-tde-04122015-094201
record_format oai_dc
collection NDLTD
language en
format Others
sources NDLTD
topic Condições de não-degeneração
Global injectivity of polynomial maps
Index of real polynomials maps
Índice de aplicações polinomiais reais
Injectividade global de aplicações polinomiais
Lojasiewicz exponent at infinity
Multiplicidade de aplicações polinomiais
Multiplicity of polynomial maps
Newton polyhedra
Non-degeneracy conditions
Poliedros de Newton
spellingShingle Condições de não-degeneração
Global injectivity of polynomial maps
Index of real polynomials maps
Índice de aplicações polinomiais reais
Injectividade global de aplicações polinomiais
Lojasiewicz exponent at infinity
Multiplicidade de aplicações polinomiais
Multiplicity of polynomial maps
Newton polyhedra
Non-degeneracy conditions
Poliedros de Newton
Huarcaya, Jorge Alberto Coripaco
Non-degeneracy of polynomial maps with respect to global Newton polyhedra
description Let F : Kn &rarr; Kp be a polynomial map, where K = R or C. Motivated by the characterization of the integral closure of ideals in the ring On by means of analytic inequalities proven by Lejeune-Teissier [46], we define the set Sp(F) of special polynomials with respect to F. The set Sp(F) can be considered as a counterpart, in the context of polynomial maps Kn &rarr; Kp, of the notion of integral closure of ideals in the ring of analytic function germs (~&lceil;+. In this work, we are mainly interested in the determination of the convex region S0(F) formed by the exponents of the special monomials with respect to F. Let us fix a convenient Newton polyhedron &lceil; + ~&sube; Rn. We obtain an approximation to S0</sub (F) when F is strongly adapted to ~&sube; +, which is a condition expressed in terms of the faces of ~&lceil;+ and the principal parts at infinity of F. The local version of this problem has been studied by Bivià-Ausina [4] and Saia [71]. Our result about the estimation of S0(F) allows us to give a lower estimate for the Lojasiewicz exponent at infinity of a given polynomial map with compact zero set. As a consequence of our study of ojasiewicz exponents at infinity we have also obtained a result about the uniformity of the ojasiewicz exponent in deformations of polynomial maps Kn &rarr; Kp. Consequently we derive a result about the invariance of the global index of real polynomial maps Rn &rarr; Rn. As particular cases of the condition of F being adapted to ~&lceil;+ there appears the class of Newton non-degenerate polynomial maps at infinity and pre-weighted homogeneous maps. The first class of maps constitute a natural extension for maps of the Newton non-degeneracy condition introduced by Kouchnirenko for polynomial functions. We characterize the Newton non-degeneracy at infinity condition of a given polynomial map F : Kn &rarr; Kp in terms of the set S0((F, 1)), where (F, 1) : Kn &rarr; Kp+1 is the polynomial map whose last component function equals 1. Motivated by analogous problems in local algebra we also derive some results concerning the multiplicity of F. === Seja F :Kn &rarr; Kp uma aplicação polinomial, onde K = C ou K = R. Motivados pela caracterização do fecho integral de ideais no anel On por meio de desigualdades analíticas provadas por Lejeune-Teissier [46], definimos o conjunto Sp(F) de polinomios especiais com respeito a F. O conjunto Sp(F) pode ser considerado como um homólogo, no contexto das aplicações polinomiais Kn &rarr; Kp, da noção de fecho integral de ideais no anel de germes de funções analíticas (Kn 0) &rarr; K. Neste trabalho, estamos interessados principalmente na determinação da região convexa S0 (F) formado pelos expoentes dos monômios especiais com respeito a F. Fixado um poliedro de Newton conveniente ~&lceil; + ~&sube; Rn, é obtida uma aproximação de S0(F), quando F é fortemente adaptada a &lceil; + o qual é uma condição expressada em termos das faces de ~&lceil; + e as partes principais no infinito de F. A versão local deste problema foi estudado por Bivià-Ausina [4] e Saia [71]. Nosso resultado sobre a estimativa de S0(F) nos permite dar uma estimativa inferior para o expoente Lojasiewicz no infinito de uma aplicação polinomial Kn &rarr; Kp, com conjunto F-1(0) compacto. Como uma consequência do estudo dos expoentes de Lojasiewicz no infinito também foi obtido um resultado sobre a uniformidade do expoente Lojasiewicz em deformações de aplicações polinomiais Kn &rarr; Kp e consequentemente, um resultado sobre a invariância do índice global de aplicações polinomiais reais Rn &rarr; Rn. Como casos particulares da condição de F ser adaptada a ~&lceil; + aparecem a classe de aplicações polinomiais Newton não degeneradas e as aplicações polinomiais pre-quase homogêneas. A primeira classe de aplicações constitui uma extensão natural da condição Newton não-degeneração introduzida por Kouchnirenko para funções polinomiais. Caracterizamos a condição Newton não-degeneração para uma determinada aplicação polinomial F : Kn &rarr; Kp em termos do conjunto S0((F, 1)), onde (F, 1) : Kn &rarr; Kp+1 é a aplicação polinomial cuja última função componente é igual a 1. Motivados por problemas análogos em álgebra local, também obtivemos alguns resultados sobre a multiplicidade de F.
author2 Saia, Marcelo José
author_facet Saia, Marcelo José
Huarcaya, Jorge Alberto Coripaco
author Huarcaya, Jorge Alberto Coripaco
author_sort Huarcaya, Jorge Alberto Coripaco
title Non-degeneracy of polynomial maps with respect to global Newton polyhedra
title_short Non-degeneracy of polynomial maps with respect to global Newton polyhedra
title_full Non-degeneracy of polynomial maps with respect to global Newton polyhedra
title_fullStr Non-degeneracy of polynomial maps with respect to global Newton polyhedra
title_full_unstemmed Non-degeneracy of polynomial maps with respect to global Newton polyhedra
title_sort non-degeneracy of polynomial maps with respect to global newton polyhedra
publisher Biblioteca Digitais de Teses e Dissertações da USP
publishDate 2015
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-04122015-094201/
work_keys_str_mv AT huarcayajorgealbertocoripaco nondegeneracyofpolynomialmapswithrespecttoglobalnewtonpolyhedra
AT huarcayajorgealbertocoripaco naodegeneracaodeaplicacoespolinomiaiscomrespeitoapoliedrosdenewtonglobais
_version_ 1719052122299826176
spelling ndltd-usp.br-oai-teses.usp.br-tde-04122015-0942012019-05-09T18:00:50Z Non-degeneracy of polynomial maps with respect to global Newton polyhedra Não-degeneração de aplicações polinomiais com respeito à poliedros de Newton globais Huarcaya, Jorge Alberto Coripaco Condições de não-degeneração Global injectivity of polynomial maps Index of real polynomials maps Índice de aplicações polinomiais reais Injectividade global de aplicações polinomiais Lojasiewicz exponent at infinity Multiplicidade de aplicações polinomiais Multiplicity of polynomial maps Newton polyhedra Non-degeneracy conditions Poliedros de Newton Let F : Kn &rarr; Kp be a polynomial map, where K = R or C. Motivated by the characterization of the integral closure of ideals in the ring On by means of analytic inequalities proven by Lejeune-Teissier [46], we define the set Sp(F) of special polynomials with respect to F. The set Sp(F) can be considered as a counterpart, in the context of polynomial maps Kn &rarr; Kp, of the notion of integral closure of ideals in the ring of analytic function germs (~&lceil;+. In this work, we are mainly interested in the determination of the convex region S0(F) formed by the exponents of the special monomials with respect to F. Let us fix a convenient Newton polyhedron &lceil; + ~&sube; Rn. We obtain an approximation to S0</sub (F) when F is strongly adapted to ~&sube; +, which is a condition expressed in terms of the faces of ~&lceil;+ and the principal parts at infinity of F. The local version of this problem has been studied by Bivià-Ausina [4] and Saia [71]. Our result about the estimation of S0(F) allows us to give a lower estimate for the Lojasiewicz exponent at infinity of a given polynomial map with compact zero set. As a consequence of our study of ojasiewicz exponents at infinity we have also obtained a result about the uniformity of the ojasiewicz exponent in deformations of polynomial maps Kn &rarr; Kp. Consequently we derive a result about the invariance of the global index of real polynomial maps Rn &rarr; Rn. As particular cases of the condition of F being adapted to ~&lceil;+ there appears the class of Newton non-degenerate polynomial maps at infinity and pre-weighted homogeneous maps. The first class of maps constitute a natural extension for maps of the Newton non-degeneracy condition introduced by Kouchnirenko for polynomial functions. We characterize the Newton non-degeneracy at infinity condition of a given polynomial map F : Kn &rarr; Kp in terms of the set S0((F, 1)), where (F, 1) : Kn &rarr; Kp+1 is the polynomial map whose last component function equals 1. Motivated by analogous problems in local algebra we also derive some results concerning the multiplicity of F. Seja F :Kn &rarr; Kp uma aplicação polinomial, onde K = C ou K = R. Motivados pela caracterização do fecho integral de ideais no anel On por meio de desigualdades analíticas provadas por Lejeune-Teissier [46], definimos o conjunto Sp(F) de polinomios especiais com respeito a F. O conjunto Sp(F) pode ser considerado como um homólogo, no contexto das aplicações polinomiais Kn &rarr; Kp, da noção de fecho integral de ideais no anel de germes de funções analíticas (Kn 0) &rarr; K. Neste trabalho, estamos interessados principalmente na determinação da região convexa S0 (F) formado pelos expoentes dos monômios especiais com respeito a F. Fixado um poliedro de Newton conveniente ~&lceil; + ~&sube; Rn, é obtida uma aproximação de S0(F), quando F é fortemente adaptada a &lceil; + o qual é uma condição expressada em termos das faces de ~&lceil; + e as partes principais no infinito de F. A versão local deste problema foi estudado por Bivià-Ausina [4] e Saia [71]. Nosso resultado sobre a estimativa de S0(F) nos permite dar uma estimativa inferior para o expoente Lojasiewicz no infinito de uma aplicação polinomial Kn &rarr; Kp, com conjunto F-1(0) compacto. Como uma consequência do estudo dos expoentes de Lojasiewicz no infinito também foi obtido um resultado sobre a uniformidade do expoente Lojasiewicz em deformações de aplicações polinomiais Kn &rarr; Kp e consequentemente, um resultado sobre a invariância do índice global de aplicações polinomiais reais Rn &rarr; Rn. Como casos particulares da condição de F ser adaptada a ~&lceil; + aparecem a classe de aplicações polinomiais Newton não degeneradas e as aplicações polinomiais pre-quase homogêneas. A primeira classe de aplicações constitui uma extensão natural da condição Newton não-degeneração introduzida por Kouchnirenko para funções polinomiais. Caracterizamos a condição Newton não-degeneração para uma determinada aplicação polinomial F : Kn &rarr; Kp em termos do conjunto S0((F, 1)), onde (F, 1) : Kn &rarr; Kp+1 é a aplicação polinomial cuja última função componente é igual a 1. Motivados por problemas análogos em álgebra local, também obtivemos alguns resultados sobre a multiplicidade de F. Biblioteca Digitais de Teses e Dissertações da USP Saia, Marcelo José 2015-07-02 Tese de Doutorado application/pdf http://www.teses.usp.br/teses/disponiveis/55/55135/tde-04122015-094201/ en Liberar o conteúdo para acesso público.