Summary: | Fazemos uma análise das teorias de campos escalar e vetorial na correspondência AdS/CFT. Começamos apresentando as propriedades básicas das teorias conformes e dos espaços AdS. Então, estudamos em detalhe os problemas da estabilidade e quantização do campo escalar acoplado com espaços assintóticamente AdS, seguindo o trabalho de Breitenlohner e Freedman [1]. Mostramos que existem dois tipos de modos normalizáveis: os \"regulares\" e os \"irregulares\" . No caso dos modos \'\'\'regulares\'\', a energia é positiva e finita para qualquer valor do coeficiente de acoplamento do campo com o fundo e para massa do campo satisfazendo o vínculo m POT.2 > -d POT.2/4, onde d + 1 é a dimensão do espaço-tempo. No caso dos modos \"irregulares\", a energia é positiva e finita para -d POT.2/4 < m POT.2 < 1 -d POT.2/4 e para valores particulares do coeficiente de acoplamento do campo com o fundo. A seguir estudamos o problema de reproduzir esses resultados na correspondência AdS / CFT. Trabalhamos com ações estacionárias perante condições de contorno de Dirichlet, Neumann e mistas, onde as últimas fixam na borda do espaço AdS o valor de combinações lineares do campo e sua derivada normal. Mostramos que os resultados são consistentes com a condição de unitariedade do campo escalar, que o formalismo fixa a normalização das ações na borda, e que são reproduzidas as teorias conformes correspondentes às condições \"regulares\" e \"irregulares\". Finalmente, consideramos teorias de campo vetorial em três dimensões e contendo um termo de Chern-Simons. Encontramos as funções de dois pontos na borda correspondentes às teorias de Proca-Chern-Simons e Maxwell-Chern-Simons. No caso do modelo Auto-Dual, adicionamos um termo de superfície que faz com que a ação seja estacionária, e que fornece funções de dois pontos na borda que são consistentes com a equivalência do modelo Auto-Dual com a teoria de Maxwell-Chern-Simons. === We consider scalar and vector field theories in the AdS/CFT correspondence. We begin by describing conformai field theories and AdS spaces. Then, we follow the work by Breitenlohner and Freedman [1] and study in detail the problems of stability and quantization of a: scalar field coupled to an asymptotically AdS space. We show that there exist two different kinds of normalizable modes, namely the regular and the irregular ones. In the case of the regular modes the energy is positive and finite for any value of the coupling coefficient between the field and the background and for m2 > -d2/4 where m is the mass of the scalar field and d + 1 is the dimension of the space-time. In the case of the \'irregular\' modes the energy is positive and finite for - d2/4 < m2 < 1- d2/4 and for particular values ofthe coupling coefficient between the field and the background. Then, we consider the problem of reproduzing these results in the AdS/CFT correspondence context. We analize actions which are stationary under Dirichlet, Neumann and mixed boundary conditions on the field where the mixed boundary conditions are a combination of the Dirichlet and Neumann ones. We show that our results are consistent with the unitarity bound for the scalar field, that the formalism fixes the normalization of the actions at the bounelary anel that we reproduce the conformal field theories corresponding to the regular and irregular conditions. Finally, we consider vector field theories in three dimensional AdS spaces and including a Chern-Simons term. We find the boundary two-point functions corresponding to the Proca-Chern-Simons and Maxwell-Chern-Simons theories. In the case of the Self-Dual model we add a surface term which makes the action stationary and which gives rise to boundary two-point functions which are consistent with the equivalence between the Self-Dual model and the Maxwell-Chern-Simons theory.
|