Influência das características mecânicas da entressola e da estrutura do cabedal de calçados esportivos na percepção do conforto e na biomecânica da corrida
o presente estudo teve por objetivo investigar a influência de duas diferentes resiliências de materiais de amortecimento e de dois tipos de cabedais de calçados esportivos na cinemática e cinética de membro inferior e na percepção do conforto durante a corrida. Também investigamos as possíveis r...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | pt |
Published: |
Biblioteca Digitais de Teses e Dissertações da USP
2016
|
Subjects: | |
Online Access: | http://www.teses.usp.br/teses/disponiveis/5/5170/tde-04112016-114124/ |
id |
ndltd-usp.br-oai-teses.usp.br-tde-04112016-114124 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
pt |
format |
Others
|
sources |
NDLTD |
topic |
Amortecimento Aprendizado de máquina supervisionada Biomechanical phenomena Corrida Damping Fenômenos biomecânicos Percepção Perception Pressão Pressure Running Sapatos Shoes Supervised machine learning |
spellingShingle |
Amortecimento Aprendizado de máquina supervisionada Biomechanical phenomena Corrida Damping Fenômenos biomecânicos Percepção Perception Pressão Pressure Running Sapatos Shoes Supervised machine learning Onodera, Andrea Naomi Influência das características mecânicas da entressola e da estrutura do cabedal de calçados esportivos na percepção do conforto e na biomecânica da corrida |
description |
o presente estudo teve por objetivo investigar a influência de duas diferentes resiliências de materiais de amortecimento e de dois tipos de cabedais de calçados esportivos na cinemática e cinética de membro inferior e na percepção do conforto durante a corrida. Também investigamos as possíveis relações entre o conforto percebido e as variáveis biomecânicas capturadas. Para tal, foram avaliados 42 corredores recreacionais adultos, com no mínimo de um ano de experiência em corrida de rua, com mínimo de dois treinos regulares por semana, e com volume de treino semanal superior a 5 km. Foram avaliadas quatro condições de calçados aleatorizadas para cada corredor (material de amortecimento de baixa resiliência e cabedal estruturado, material amortecimento de alta resiliência e cabedal estruturado, material de amortecimento de baixa resiliência e cabedal minimalista, e material amortecimento de alta resiliência e cabedal minimalista). Após avaliação antropométrica e postural do complexo tornozelo/pé, os corredores realizaram corridas em uma pista de 25 metros em laboratório. A avaliação biomecânica foi realizada usando seis câmeras infravermelhas (VICON T-40, Oxford, UK) a 300 Hz, sincronizadas a duas plataformas de força (AMTI BP-600600, Watertown, USA) para aquisição da força reação do solo a 1200 Hz, e palmilhas instrumentas com sensores capacitivos (Pedar X System, Novel, Munique, Alemanha) a 100 Hz. A percepção subjetiva de conforto em cada condição foi avaliada por meio de um questionário de conforto para calçados. As comparações estatísticas entre os calçados foram verificadas por meio de análises de variância (ANOVAs) para medidas repetidas, e correlação de Pearson para verificar as relações entre o conforto e as variáveis biomecânicas (a=O,05). Realizou-se uma análise de Machine Learning para capturar variáveis da série temporal completa das curvas de cinemática e cinética que discriminassem os calçados estudados. Construímos uma matriz de entrada nas dimensões 1080 x 1242 para a análise por Machine learning. Os resultados demonstram que há uma interação entre as condições de cabedal e material de amortecimento que faz com que as comparações de resiliência se comportem de forma distinta para cabedais minimalistas e para cabedais estruturados. Contrariamente ao esperado, para os calçados de cabedal estruturado, as resiliências não foram diferentes entre si, e para o cabedal minimalista, os corredores apresentaram impactos mais altos com o material de baixa resiliência. A estrutura de cabedal influenciou a absorção de impacto, onde o cabedal minimalista apresentou impactos mais altos que o cabedal estruturado. Sobre o conforto, a condição de cabedal minimalista e material de baixa resiliência obteve as piores notas em cinco de nove quesitos do questionário. Em alguns quesitos ele foi o pior avaliado dentre todas as demais condições (como no amortecimento do calcanhar e no conforto geral). O cabedal minimalista recebeu pior avaliação que os cabedais estrutura dos no quesito controle médio-lateral da avaliação de conforto. Observou-se que a correlação entre as variáveis biomecânicas e as variáveis de conforto considerando todos os calçados conjuntamente, apesar de apresentarem valores significativos para algumas associações, foram sempre correlações fracas, abaixo de 30%. Ao se analisar cada condição de calçado isoladamente, em algumas se observou correlação moderada entre as variáveis biomecânicas e o conforto (r >31%, p < O,05), o que não se verificou em outras condições de calçados. Cada calçado gera condições particulares que favorecem ou não a associação entre conforto e repostas biomecânicas. Sobre a análise de Machine Learning, a metodologia foi capaz de diferenciar com sucesso os dois materiais de resiliência diferentes utilizando 200 (16%) variáveis biomecânicas disponíveis com uma precisão de 84,8%, e os dois cabedais com uma precisão de 93,9%. A discriminação da resiliência da entressola resultou em níveis de acurácia mais baixos do que a discriminação dos cabedais de calçados. Em ambos os casos, no entanto, as forças de reação do solo estavam entre as 25 variáveis mais relevantes. As 200 variáveis mais relevantes que discriminaram as duas resiliências estavam distribuídas em curtas janelas de tempo, ao longo de toda série temporal da cinemática e força. Estas janelas corresponderam a padrões individuais de respostas biomecânicas, ou a um grupo de indivíduos que apresentaram as mesmas respostas biomecânicas frente aos diferentes materiais de amortecimento. Como conclusão, destacamos que o cabedal tem maior influência que o material de amortecimento quando se trata da biomecânica da corrida e conforto subjetivo. Nos cabedais estruturados, a resiliência do material da entressola não diferenciou a biomecânica da corrida. A resiliência do material de amortecimento causa efeitos importantes sobre o impacto do calcanhar (menores loading rate, frequência mediana, pico de pressão em retropé) durante a corrida em cabedais com pouca estrutura. Alterações biomecânicas devido à resiliência do material de amortecimento parecem ser dependentes do sujeito, enquanto as relacionadas à estrutura de cabedal parecem ser mais sujeito independente. Sugere-se ter cautela ao afirmar que um calçado mais confortável também gerará respostas positivas biomecânicas, pois as associações entre essas variáveis analisando todos os calçados conjuntamente foram sempre correlações fracas. As correlações moderadas e particulares de cada condição de calçado com determinadas variáveis de conforto nos levam a concluir que os materiais aplicados nos calçado favorecem mais ou menos a percepção de determinada característica de conforto === The aim of this study was to investiga te the influence of two cushioning materiais with different resiliencies and two types of uppers of sportive shoes on kinematics and kinetics of lower limb and on the subjective perception of comfort during running. We also investigated the potential relationship between the perceived comfort and biomechanical variables analyzed. For this purpose, 42 adult recreational runners were evaluated. lhey had at least one year of experience on running, minimum of two regular running workouts per week, and weekly training volume above 5 km. We evaluated four randomized shoes conditions for each athlete (Iow resilience cushioning material and structured upper, high resilience cushioning material and structured upper, low resilience cushioning material and minimalist upper, and high resilience cushioning material and minimalist upper). After anthropometric and postura I assessment of the foot/ankle complex, runners held trials on a 25 meters long indoor track. Biomechanical data were collected by six infrared cameras (VICON l-40, Oxford, UK) at 300 Hz, synchronized with two force platforms (AMll BP-600600, Watertown, USA) at 1200Hz, and in- shoe plantar pressure insoles (Pedar X System, Nove\" Munich, Germany) at 100 Hz. Subjective perception of comfort in each shoe condition was assessed by a questionnaire of footwear comfort. lhe statistical comparisons between the shoes were verified by analysis of variance (ANOVA) for repeated measures and Pearson\'s correlation to verify the relationship between comfort and biomechanical variables (a=0.05). We conducted a Machine Learning analysis to capture variables from the complete kinematics and kinetics time series, which would be able to discriminate the studied footwear. We build an input matrix in the dimensions of 1080 x 1242 for Machine Learning analysis. There was an interaction between the upper structure and the resilience of cushioning material that made comparisons between resiliencies to behave differently for minimal uppers and for structured uppers. Contrary to expectation, for structured uppers, resiliencies were not different from each other, and for the minimal upper, runners had higher impact with the low-resilience material. lhe upper structure influenced the absorption of impact, in which the minimalist upper presented higher impacts than the structured upper. About comfort, minimalist upper condition and low resilience materiais had the worst grades for five of nine questions of the questionnaire. In some questions it was the worst of ali conditions (such as for the comfort in the heel cushioning and overall comfort). lhe minimalist upper received worse assessment than the structured uppers in the question about the mediolateral control. It was observed that the correlation between biomechanical variables and comfort, considering ali shoe conditions together, despite having significant values for some correlations were weak correlations (r <30%, p <0.05). When each shoe condition is analyzed alone, some footwear conditions had moderate correlation between comfort and biomechanical variables (r >31%, p <0.05L although the same behavior was not observed in other shoe conditions. Each shoe represents a specific condition that favor or not the association between comfort and biomechanical responses. On Machine Learning analysis, the method was able to successfully distinguish between the two different resiliencies using 200 (16%) of available biomechanical variables with an accuracy of 84.8%, and between the 2 uppers with an accuracy of 93.9 %. Discrimination of the resiliencies resulted in lower levels of accuracy than the discrimination of shoe uppers. In both cases, however, the ground reaction forces were among the 25 most important features. The 200 most relevant features which discriminate the two resiliencies were distribuited in short time windows along the kinematic and force time series. These windows corresponded to individual biomechanical patterns, or patterns of a group of people with similar behavior. In conclusion, we emphasize that the upper has greater influence than the resilience of cushioning material when it is about biomechanics of running and subjective comfort of the shoes. In structured uppers, the biomechanics did not differenciate the resiliencies of the midsole materiais. The resilience of the cushioning material has important effects on the heel impact (Iower loading rate, median frequency, peak pressure in rearfoot) during running on shoes with little structure on the upper. Biomechanical changes due to the resilience of the cushioning material seems to be dependent on the subject, while related to the upper structure seems to be more independent of the subject. It is suggested to be cautious to affirm that more comfortable footwear will also let to positive biomechanical responses. That is because the correlations between these variables when analyzing ali the footwear together were always weak. Moderate and positive correlations of each shoe condition with some of comfort variables lead us to conclude that the materiais applied on each footwear favors more or less the comfort perception |
author2 |
Sacco, Isabel de Camargo Neves |
author_facet |
Sacco, Isabel de Camargo Neves Onodera, Andrea Naomi |
author |
Onodera, Andrea Naomi |
author_sort |
Onodera, Andrea Naomi |
title |
Influência das características mecânicas da entressola e da estrutura do cabedal de calçados esportivos na percepção do conforto e na biomecânica da corrida |
title_short |
Influência das características mecânicas da entressola e da estrutura do cabedal de calçados esportivos na percepção do conforto e na biomecânica da corrida |
title_full |
Influência das características mecânicas da entressola e da estrutura do cabedal de calçados esportivos na percepção do conforto e na biomecânica da corrida |
title_fullStr |
Influência das características mecânicas da entressola e da estrutura do cabedal de calçados esportivos na percepção do conforto e na biomecânica da corrida |
title_full_unstemmed |
Influência das características mecânicas da entressola e da estrutura do cabedal de calçados esportivos na percepção do conforto e na biomecânica da corrida |
title_sort |
influência das características mecânicas da entressola e da estrutura do cabedal de calçados esportivos na percepção do conforto e na biomecânica da corrida |
publisher |
Biblioteca Digitais de Teses e Dissertações da USP |
publishDate |
2016 |
url |
http://www.teses.usp.br/teses/disponiveis/5/5170/tde-04112016-114124/ |
work_keys_str_mv |
AT onoderaandreanaomi influenciadascaracteristicasmecanicasdaentressolaedaestruturadocabedaldecalcadosesportivosnapercepcaodoconfortoenabiomecanicadacorrida AT onoderaandreanaomi influenceofmechanicalcharacteristicsofmidsaleandupperstructureafrunningshaesinthecomjortandbiamechanicsotrunning |
_version_ |
1719052047299379200 |
spelling |
ndltd-usp.br-oai-teses.usp.br-tde-04112016-1141242019-05-09T18:00:14Z Influência das características mecânicas da entressola e da estrutura do cabedal de calçados esportivos na percepção do conforto e na biomecânica da corrida Influence of mechanical characteristics of midsale and upper structure af running shaes in the comjort and biamechanics ot running Onodera, Andrea Naomi Amortecimento Aprendizado de máquina supervisionada Biomechanical phenomena Corrida Damping Fenômenos biomecânicos Percepção Perception Pressão Pressure Running Sapatos Shoes Supervised machine learning o presente estudo teve por objetivo investigar a influência de duas diferentes resiliências de materiais de amortecimento e de dois tipos de cabedais de calçados esportivos na cinemática e cinética de membro inferior e na percepção do conforto durante a corrida. Também investigamos as possíveis relações entre o conforto percebido e as variáveis biomecânicas capturadas. Para tal, foram avaliados 42 corredores recreacionais adultos, com no mínimo de um ano de experiência em corrida de rua, com mínimo de dois treinos regulares por semana, e com volume de treino semanal superior a 5 km. Foram avaliadas quatro condições de calçados aleatorizadas para cada corredor (material de amortecimento de baixa resiliência e cabedal estruturado, material amortecimento de alta resiliência e cabedal estruturado, material de amortecimento de baixa resiliência e cabedal minimalista, e material amortecimento de alta resiliência e cabedal minimalista). Após avaliação antropométrica e postural do complexo tornozelo/pé, os corredores realizaram corridas em uma pista de 25 metros em laboratório. A avaliação biomecânica foi realizada usando seis câmeras infravermelhas (VICON T-40, Oxford, UK) a 300 Hz, sincronizadas a duas plataformas de força (AMTI BP-600600, Watertown, USA) para aquisição da força reação do solo a 1200 Hz, e palmilhas instrumentas com sensores capacitivos (Pedar X System, Novel, Munique, Alemanha) a 100 Hz. A percepção subjetiva de conforto em cada condição foi avaliada por meio de um questionário de conforto para calçados. As comparações estatísticas entre os calçados foram verificadas por meio de análises de variância (ANOVAs) para medidas repetidas, e correlação de Pearson para verificar as relações entre o conforto e as variáveis biomecânicas (a=O,05). Realizou-se uma análise de Machine Learning para capturar variáveis da série temporal completa das curvas de cinemática e cinética que discriminassem os calçados estudados. Construímos uma matriz de entrada nas dimensões 1080 x 1242 para a análise por Machine learning. Os resultados demonstram que há uma interação entre as condições de cabedal e material de amortecimento que faz com que as comparações de resiliência se comportem de forma distinta para cabedais minimalistas e para cabedais estruturados. Contrariamente ao esperado, para os calçados de cabedal estruturado, as resiliências não foram diferentes entre si, e para o cabedal minimalista, os corredores apresentaram impactos mais altos com o material de baixa resiliência. A estrutura de cabedal influenciou a absorção de impacto, onde o cabedal minimalista apresentou impactos mais altos que o cabedal estruturado. Sobre o conforto, a condição de cabedal minimalista e material de baixa resiliência obteve as piores notas em cinco de nove quesitos do questionário. Em alguns quesitos ele foi o pior avaliado dentre todas as demais condições (como no amortecimento do calcanhar e no conforto geral). O cabedal minimalista recebeu pior avaliação que os cabedais estrutura dos no quesito controle médio-lateral da avaliação de conforto. Observou-se que a correlação entre as variáveis biomecânicas e as variáveis de conforto considerando todos os calçados conjuntamente, apesar de apresentarem valores significativos para algumas associações, foram sempre correlações fracas, abaixo de 30%. Ao se analisar cada condição de calçado isoladamente, em algumas se observou correlação moderada entre as variáveis biomecânicas e o conforto (r >31%, p < O,05), o que não se verificou em outras condições de calçados. Cada calçado gera condições particulares que favorecem ou não a associação entre conforto e repostas biomecânicas. Sobre a análise de Machine Learning, a metodologia foi capaz de diferenciar com sucesso os dois materiais de resiliência diferentes utilizando 200 (16%) variáveis biomecânicas disponíveis com uma precisão de 84,8%, e os dois cabedais com uma precisão de 93,9%. A discriminação da resiliência da entressola resultou em níveis de acurácia mais baixos do que a discriminação dos cabedais de calçados. Em ambos os casos, no entanto, as forças de reação do solo estavam entre as 25 variáveis mais relevantes. As 200 variáveis mais relevantes que discriminaram as duas resiliências estavam distribuídas em curtas janelas de tempo, ao longo de toda série temporal da cinemática e força. Estas janelas corresponderam a padrões individuais de respostas biomecânicas, ou a um grupo de indivíduos que apresentaram as mesmas respostas biomecânicas frente aos diferentes materiais de amortecimento. Como conclusão, destacamos que o cabedal tem maior influência que o material de amortecimento quando se trata da biomecânica da corrida e conforto subjetivo. Nos cabedais estruturados, a resiliência do material da entressola não diferenciou a biomecânica da corrida. A resiliência do material de amortecimento causa efeitos importantes sobre o impacto do calcanhar (menores loading rate, frequência mediana, pico de pressão em retropé) durante a corrida em cabedais com pouca estrutura. Alterações biomecânicas devido à resiliência do material de amortecimento parecem ser dependentes do sujeito, enquanto as relacionadas à estrutura de cabedal parecem ser mais sujeito independente. Sugere-se ter cautela ao afirmar que um calçado mais confortável também gerará respostas positivas biomecânicas, pois as associações entre essas variáveis analisando todos os calçados conjuntamente foram sempre correlações fracas. As correlações moderadas e particulares de cada condição de calçado com determinadas variáveis de conforto nos levam a concluir que os materiais aplicados nos calçado favorecem mais ou menos a percepção de determinada característica de conforto The aim of this study was to investiga te the influence of two cushioning materiais with different resiliencies and two types of uppers of sportive shoes on kinematics and kinetics of lower limb and on the subjective perception of comfort during running. We also investigated the potential relationship between the perceived comfort and biomechanical variables analyzed. For this purpose, 42 adult recreational runners were evaluated. lhey had at least one year of experience on running, minimum of two regular running workouts per week, and weekly training volume above 5 km. We evaluated four randomized shoes conditions for each athlete (Iow resilience cushioning material and structured upper, high resilience cushioning material and structured upper, low resilience cushioning material and minimalist upper, and high resilience cushioning material and minimalist upper). After anthropometric and postura I assessment of the foot/ankle complex, runners held trials on a 25 meters long indoor track. Biomechanical data were collected by six infrared cameras (VICON l-40, Oxford, UK) at 300 Hz, synchronized with two force platforms (AMll BP-600600, Watertown, USA) at 1200Hz, and in- shoe plantar pressure insoles (Pedar X System, Nove\" Munich, Germany) at 100 Hz. Subjective perception of comfort in each shoe condition was assessed by a questionnaire of footwear comfort. lhe statistical comparisons between the shoes were verified by analysis of variance (ANOVA) for repeated measures and Pearson\'s correlation to verify the relationship between comfort and biomechanical variables (a=0.05). We conducted a Machine Learning analysis to capture variables from the complete kinematics and kinetics time series, which would be able to discriminate the studied footwear. We build an input matrix in the dimensions of 1080 x 1242 for Machine Learning analysis. There was an interaction between the upper structure and the resilience of cushioning material that made comparisons between resiliencies to behave differently for minimal uppers and for structured uppers. Contrary to expectation, for structured uppers, resiliencies were not different from each other, and for the minimal upper, runners had higher impact with the low-resilience material. lhe upper structure influenced the absorption of impact, in which the minimalist upper presented higher impacts than the structured upper. About comfort, minimalist upper condition and low resilience materiais had the worst grades for five of nine questions of the questionnaire. In some questions it was the worst of ali conditions (such as for the comfort in the heel cushioning and overall comfort). lhe minimalist upper received worse assessment than the structured uppers in the question about the mediolateral control. It was observed that the correlation between biomechanical variables and comfort, considering ali shoe conditions together, despite having significant values for some correlations were weak correlations (r <30%, p <0.05). When each shoe condition is analyzed alone, some footwear conditions had moderate correlation between comfort and biomechanical variables (r >31%, p <0.05L although the same behavior was not observed in other shoe conditions. Each shoe represents a specific condition that favor or not the association between comfort and biomechanical responses. On Machine Learning analysis, the method was able to successfully distinguish between the two different resiliencies using 200 (16%) of available biomechanical variables with an accuracy of 84.8%, and between the 2 uppers with an accuracy of 93.9 %. Discrimination of the resiliencies resulted in lower levels of accuracy than the discrimination of shoe uppers. In both cases, however, the ground reaction forces were among the 25 most important features. The 200 most relevant features which discriminate the two resiliencies were distribuited in short time windows along the kinematic and force time series. These windows corresponded to individual biomechanical patterns, or patterns of a group of people with similar behavior. In conclusion, we emphasize that the upper has greater influence than the resilience of cushioning material when it is about biomechanics of running and subjective comfort of the shoes. In structured uppers, the biomechanics did not differenciate the resiliencies of the midsole materiais. The resilience of the cushioning material has important effects on the heel impact (Iower loading rate, median frequency, peak pressure in rearfoot) during running on shoes with little structure on the upper. Biomechanical changes due to the resilience of the cushioning material seems to be dependent on the subject, while related to the upper structure seems to be more independent of the subject. It is suggested to be cautious to affirm that more comfortable footwear will also let to positive biomechanical responses. That is because the correlations between these variables when analyzing ali the footwear together were always weak. Moderate and positive correlations of each shoe condition with some of comfort variables lead us to conclude that the materiais applied on each footwear favors more or less the comfort perception Biblioteca Digitais de Teses e Dissertações da USP Sacco, Isabel de Camargo Neves 2016-08-26 Tese de Doutorado application/pdf http://www.teses.usp.br/teses/disponiveis/5/5170/tde-04112016-114124/ pt Liberar o conteúdo para acesso público. |