Arrranjos supramoleculares de lípide catiônico, antibióticos e polímeros: preparação, caracterização e atividade contra bactérias multirresistentes e micobactérias de crescimento rápido

Arranjos supramoleculares combinando o lípide catiônico brometo de dioctadecildimetilamônio (DOD) com polímeros, como carboximetilcelulose (CMC) e cloreto de poli(dialildimetilamônio) (PDDA), foram preparados na forma de nanopartículas (NPs), na ausência ou presença de antimicrobiano tradicional, co...

Full description

Bibliographic Details
Main Author: Carrasco, Letícia Dias de Melo
Other Authors: Carmona-Ribeiro, Ana Maria
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2016
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/9/9136/tde-04082016-092804/
Description
Summary:Arranjos supramoleculares combinando o lípide catiônico brometo de dioctadecildimetilamônio (DOD) com polímeros, como carboximetilcelulose (CMC) e cloreto de poli(dialildimetilamônio) (PDDA), foram preparados na forma de nanopartículas (NPs), na ausência ou presença de antimicrobiano tradicional, como a claritromicina (CLA). NPs preparadas por atração eletrostática entre os fragmentos de bicamada (BF) de DOD, CMC e PDDA foram avaliadas, in vitro, quanto à atividade contra isolados clínicos de micro-organismos multirresistentes (MR) a antimicrobianos, como Pseudomonas aeruginosa MR, Klebsiella pneumoniae produtora da enzima carbapenemase do tipo KPC, Staphylococcus aureus resistente à meticilina/oxacilina (MRSA) e Candida albicans resistente ao fluconazol, através do método de plaqueamento e contagem de viáveis. As NPs de DOD BF/CMC/PDDA apresentam alta atividade de amplo espectro contra micro-organismos MR, em que o PDDA é o componente responsável pela excelente atividade biocida das NPs. O mecanismo de ação antimicrobiana indica a dissociação dessas NPs na presença dos micro-organismos, com a remoção de biopolímeros da parede celular microbiana pelo PDDA, conforme visualizado por microscopia eletrônica de varredura, ocorrendo lise da membrana microbiana e liberação de compostos fosforilados para o meio extracelular. Também foram desenvolvidas neste trabalho NPs carreadoras de CLA à base de DOD e polímeros. Solução etanólica contendo CLA/DOD foi injetada em solução aquosa de CMC, formando arranjos coloidalmente estáveis e aniônicos, que posteriormente foram adicionados de solução de PDDA, para a obtenção de arranjos estáveis e catiônicos. CLA/DOD/CMC e CLA/DOD/CMC/PDDA NPs incorporaram CLA em quantidade suficiente para inibir o crescimento de M. abscessus no interior de macrófagos bem como evitar a formação de biofilmes, sendo que altas doses de CLA foram tóxicas aos macrófagos, enquanto doses menores apresentaram baixa toxicidade e boa atividade antimicrobiana. NPs catiônicas carreando CLA foram tóxicas aos macrófagos nas concentrações de PDDA testadas. A natureza particulada das CLA NPs possivelmente aumenta a retenção intracelular de CLA em comparação com CLA livre, podendo prolongar atividade da CLA contra patógenos intracelulares. Desta maneira, arranjos supramoleculares combinando lípide e polímeros, com ou sem antimicrobianos tradicionais poderão encontrar diversas aplicações nas áreas farmacêutica, médica, alimentícia e biotecnológica. === Supramolecular assemblies combining cationic lipid dioctadecyldimethylammonium bromide (DOD) and polymers, such as sodium carboxymethylcellulose (CMC) and poly(diallyldimethylammonium chloride) (PDDA), were prepared as nanoparticles (NPs), in the absence or presence of traditional antibiotic, such as clarithromycin (CLA). NPs prepared by electrostatic attraction between DOD bilayer fragments (BF), CMC and PDDA were evaluated against clinical strains of multidrug resistant (MDR) microorganisms, such as Pseudomonas aeruginosa MDR, Klebsiella pneumoniae producer of KPC carbapenemase enzyme, methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans fluconazole resistant, by plating and colony forming unities counting. DOD BF/CMC/PDDA NPs display high and broad-spectrum activity against MDR microrganisms, and PDDA is the excellent biocidal component in the NPs. The mechanism of antimicrobial action shows that NPs disassembly in the presence of microrganisms, with biopolymers withdrawn from the cell wall, as observed by scanning electron microscopy, consecutively lysing bacterial membrane as determined from the leakage of inner phosphorylated compounds. In this work there have also been developed NPs, based on lipid and polymers, as carriers for CLA. Ethanolic solution co-solubilizing CLA/DOD was injected in CMC aqueous solution, yielding colloidaly stable and anionic NPs, that were further added of PDDA solution, yielding stable and cationic NPs. CLA/DOD/CMC NPs and CLA/DOD/CMC/PDDA NPs incorporated CLA at doses high enough to inhibit M. abscessus growth inside macrophages or in biofilms. Larger CLA doses were toxic to macrophages while lower CLA doses reduced toxicity to macrophages despite their high antimicrobial activity. Cationic CLA NPs exhibited substantial toxicity against macrophages at the PDDA concentrations tested. The particulate nature of these CLA NPs possibly increases intracellular CLA retention in comparison to free CLA, probably extending CLA activity against intracellular pathogens. In conclusion, supramolecular assemblies combining cationic lipid and polymers, with or without traditional antibiotics, may find multiple possibilities of applications at pharmaceutical, medical, food and biotecnological fields.