Integração da otimização em tempo real (RTO) e controle avançado (MPC) de uma separadora industrial de propeno/propano.

O propósito desta Tese é realizar o estudo da implementação do controle avançado do tipo controle preditivo baseado em modelo (MPC) e otimização em tempo real (RTO) em uma unidade de processo industrial usando como ferramentas softwares comerciais de simulação e otimização de processos. As soluções...

Full description

Bibliographic Details
Main Author: Calvo, Aldo Ignacio Hinojosa
Other Authors: Odloak, Darci
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2015
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/3/3137/tde-04012016-115933/
id ndltd-usp.br-oai-teses.usp.br-tde-04012016-115933
record_format oai_dc
collection NDLTD
language pt
format Others
sources NDLTD
topic Controle de processos
Dynamic simulation
Optimization
Otimização
Process control
Propylene production unit
Simulação dinâmica
Unidade de produção de propeno
spellingShingle Controle de processos
Dynamic simulation
Optimization
Otimização
Process control
Propylene production unit
Simulação dinâmica
Unidade de produção de propeno
Calvo, Aldo Ignacio Hinojosa
Integração da otimização em tempo real (RTO) e controle avançado (MPC) de uma separadora industrial de propeno/propano.
description O propósito desta Tese é realizar o estudo da implementação do controle avançado do tipo controle preditivo baseado em modelo (MPC) e otimização em tempo real (RTO) em uma unidade de processo industrial usando como ferramentas softwares comerciais de simulação e otimização de processos. As soluções propostas podem ser consideradas como estratégias de integração entre RTO e MPC de uma e duas camadas. Na estratégia de duas camadas, a camada superior que considera um modelo rigoroso não linear do processo computa e envia targets otimizantes à camada dinâmica do MPC, que computa as ações de controle necessárias para alcançar esses targets e estabilizar o processo. Na estratégia de uma camada, mais conhecida como MPC econômico, temos a inclusão do gradiente da função econômica na função custo do controlador preditivo. Ambas as estratégias foram estudadas e suas implementações na coluna de destilação de propeno/propano com integração energética da unidade de produção de propeno da refinaria de Capuava da Petrobras foram simuladas. Este estudo foi realizado em varias etapas. Primeiro, uma simulação dinâmica do processo foi realizada usando o simulador dinâmico SimSci Dynsim® para ser usada como uma planta virtual que também foi usada para a identificação dos modelos usados nos controladores preditivos. Segundo, os algoritmos de controle avançado foram desenvolvidos em Matlab® baseados no controlador preditivo de horizonte infinito (IHMPC), no controlador preditivo robusto (RIHMPC) e no MPC econômico. Terceiro, o algoritmo de RTO foi desenvolvido no pacote de otimização em tempo real Simsci ROMeo®, onde o modelo rigoroso não linear do processo foi implantado incluindo as etapas de simulação, reconciliação de dados e otimização. Quarto, modificações e adaptações dos algoritmos e rotinas desenvolvidas foram feitas para permitir a comunicação de dados em tempo real usando o protocolo de transferência de dados OPC entre Matlab®, Simsci Dynsim® e Simsci ROMeo ®. Finalmente, foram desenvolvidos o sequenciamento e automação dos algoritmos tanto para leitura e escritura de dados, assim como, para a rotina do RTO. Para todas as estratégias propostas nesta Tese, foram incluídos exemplos de simulação representativos onde se pode evidenciar a estabilidade e convergência das estratégias propostas, chegando-se à conclusão que as estruturas propostas de RTO/MPC podem ser implementadas no sistema real. === The aim of this Thesis is to study the implementation of advanced control, specifically, Model Predictive Control (MPC) and real time optimization (RTO) in an industrial process system using tools such as commercial software for process simulation and optimization. The proposed solutions can be considered as integration strategies of RTO and MPC with one and two layers. In the two layer approach, the upper layer that considers a rigorous non-linear steady-state model of the process computes optimizing targets that are sent to the dynamic layer that are based on the MPC, which computes the necessary control actions to reach those targets and stabilize the process system. In the one layer strategy, also called as Economic MPC, the gradient of the economic function is included in the cost function of the predictive controller. Both strategies were studied and their implementation in the energy-recovery propylene/propane splitter system of the propylene production unit at the Capuava Refinery of Petrobras was simulated. In order to accomplish this objective, the work was developed in several steps. Firstly, a dynamic simulation of the process was built in the dynamic simulator Simsci Dynsim® so that it could be used as a virtual plant in which the model identification could also be performed. Secondly, the advanced control algorithms were developed in Matlab® based on the Infinite Horizon Model Predictive Control (IHMPC), the robust predictive controller (RIHMPC) and the Economic MPC. Thirdly, the RTO algorithm was developed in the real-time optimization package Simsci ROMeo®, where the non-linear rigorous model of the process was built including the stages of simulation, data reconciliation and optimization. Fourthly, modifications and adaptation of the developed algorithms and routines were included to allow the real-time data communication considering the OPC data transfer protocol between Matlab®, Dynsim® and ROMeo ®. Finally, a sequence of algorithms was developed and automated for data reading and writing, as well as, for the RTO sequence. For all the strategies developed in this Thesis, representative simulation examples were presented in order to show the closed-loop stability and convergence of the proposed approaches, leading to the conclusion that the proposed RTO/MPC structures can be implemented in the real system.
author2 Odloak, Darci
author_facet Odloak, Darci
Calvo, Aldo Ignacio Hinojosa
author Calvo, Aldo Ignacio Hinojosa
author_sort Calvo, Aldo Ignacio Hinojosa
title Integração da otimização em tempo real (RTO) e controle avançado (MPC) de uma separadora industrial de propeno/propano.
title_short Integração da otimização em tempo real (RTO) e controle avançado (MPC) de uma separadora industrial de propeno/propano.
title_full Integração da otimização em tempo real (RTO) e controle avançado (MPC) de uma separadora industrial de propeno/propano.
title_fullStr Integração da otimização em tempo real (RTO) e controle avançado (MPC) de uma separadora industrial de propeno/propano.
title_full_unstemmed Integração da otimização em tempo real (RTO) e controle avançado (MPC) de uma separadora industrial de propeno/propano.
title_sort integração da otimização em tempo real (rto) e controle avançado (mpc) de uma separadora industrial de propeno/propano.
publisher Biblioteca Digitais de Teses e Dissertações da USP
publishDate 2015
url http://www.teses.usp.br/teses/disponiveis/3/3137/tde-04012016-115933/
work_keys_str_mv AT calvoaldoignaciohinojosa integracaodaotimizacaoemtemporealrtoecontroleavancadompcdeumaseparadoraindustrialdepropenopropano
AT calvoaldoignaciohinojosa integrationofrealtimeoptimizationrtoandmodelpredictivecontrolmpcofanindustrialpropylenepropanesplitter
_version_ 1719051088811786240
spelling ndltd-usp.br-oai-teses.usp.br-tde-04012016-1159332019-05-09T17:51:12Z Integração da otimização em tempo real (RTO) e controle avançado (MPC) de uma separadora industrial de propeno/propano. Integration of real time optimization (RTO) and model predictive control (MPC) of an industrial propylene/propane splitter. Calvo, Aldo Ignacio Hinojosa Controle de processos Dynamic simulation Optimization Otimização Process control Propylene production unit Simulação dinâmica Unidade de produção de propeno O propósito desta Tese é realizar o estudo da implementação do controle avançado do tipo controle preditivo baseado em modelo (MPC) e otimização em tempo real (RTO) em uma unidade de processo industrial usando como ferramentas softwares comerciais de simulação e otimização de processos. As soluções propostas podem ser consideradas como estratégias de integração entre RTO e MPC de uma e duas camadas. Na estratégia de duas camadas, a camada superior que considera um modelo rigoroso não linear do processo computa e envia targets otimizantes à camada dinâmica do MPC, que computa as ações de controle necessárias para alcançar esses targets e estabilizar o processo. Na estratégia de uma camada, mais conhecida como MPC econômico, temos a inclusão do gradiente da função econômica na função custo do controlador preditivo. Ambas as estratégias foram estudadas e suas implementações na coluna de destilação de propeno/propano com integração energética da unidade de produção de propeno da refinaria de Capuava da Petrobras foram simuladas. Este estudo foi realizado em varias etapas. Primeiro, uma simulação dinâmica do processo foi realizada usando o simulador dinâmico SimSci Dynsim® para ser usada como uma planta virtual que também foi usada para a identificação dos modelos usados nos controladores preditivos. Segundo, os algoritmos de controle avançado foram desenvolvidos em Matlab® baseados no controlador preditivo de horizonte infinito (IHMPC), no controlador preditivo robusto (RIHMPC) e no MPC econômico. Terceiro, o algoritmo de RTO foi desenvolvido no pacote de otimização em tempo real Simsci ROMeo®, onde o modelo rigoroso não linear do processo foi implantado incluindo as etapas de simulação, reconciliação de dados e otimização. Quarto, modificações e adaptações dos algoritmos e rotinas desenvolvidas foram feitas para permitir a comunicação de dados em tempo real usando o protocolo de transferência de dados OPC entre Matlab®, Simsci Dynsim® e Simsci ROMeo ®. Finalmente, foram desenvolvidos o sequenciamento e automação dos algoritmos tanto para leitura e escritura de dados, assim como, para a rotina do RTO. Para todas as estratégias propostas nesta Tese, foram incluídos exemplos de simulação representativos onde se pode evidenciar a estabilidade e convergência das estratégias propostas, chegando-se à conclusão que as estruturas propostas de RTO/MPC podem ser implementadas no sistema real. The aim of this Thesis is to study the implementation of advanced control, specifically, Model Predictive Control (MPC) and real time optimization (RTO) in an industrial process system using tools such as commercial software for process simulation and optimization. The proposed solutions can be considered as integration strategies of RTO and MPC with one and two layers. In the two layer approach, the upper layer that considers a rigorous non-linear steady-state model of the process computes optimizing targets that are sent to the dynamic layer that are based on the MPC, which computes the necessary control actions to reach those targets and stabilize the process system. In the one layer strategy, also called as Economic MPC, the gradient of the economic function is included in the cost function of the predictive controller. Both strategies were studied and their implementation in the energy-recovery propylene/propane splitter system of the propylene production unit at the Capuava Refinery of Petrobras was simulated. In order to accomplish this objective, the work was developed in several steps. Firstly, a dynamic simulation of the process was built in the dynamic simulator Simsci Dynsim® so that it could be used as a virtual plant in which the model identification could also be performed. Secondly, the advanced control algorithms were developed in Matlab® based on the Infinite Horizon Model Predictive Control (IHMPC), the robust predictive controller (RIHMPC) and the Economic MPC. Thirdly, the RTO algorithm was developed in the real-time optimization package Simsci ROMeo®, where the non-linear rigorous model of the process was built including the stages of simulation, data reconciliation and optimization. Fourthly, modifications and adaptation of the developed algorithms and routines were included to allow the real-time data communication considering the OPC data transfer protocol between Matlab®, Dynsim® and ROMeo ®. Finally, a sequence of algorithms was developed and automated for data reading and writing, as well as, for the RTO sequence. For all the strategies developed in this Thesis, representative simulation examples were presented in order to show the closed-loop stability and convergence of the proposed approaches, leading to the conclusion that the proposed RTO/MPC structures can be implemented in the real system. Biblioteca Digitais de Teses e Dissertações da USP Odloak, Darci 2015-02-20 Tese de Doutorado application/pdf http://www.teses.usp.br/teses/disponiveis/3/3137/tde-04012016-115933/ pt Liberar o conteúdo para acesso público.