Summary: | A principal motivação desta dissertação é um estudo realizado pelo Instituto do Câncer do Estado de São Paulo (ICESP), envolvendo oitocentos e oito pacientes com câncer em estado avançado. Cada paciente foi acompanhado a partir da primeira admissão em uma unidade de terapia intensiva (UTI) pelo motivo de câncer, por um período de no máximo dois anos. O principal objetivo do estudo é avaliar o tempo de sobrevivência e a qualidade de vida desses pacientes através do uso de um tempo ajustado pela qualidade de vida (TAQV). Segundo Gelber et al. (1989), a combinação dessas duas informações, denominada TAQV, induz a um esquema de censura informativa; consequentemente, os métodos tradicionais de análise para dados censurados, tais como o estimador de Kaplan-Meier (Kaplan e Meier, 1958) e o teste de log-rank (Peto e Peto, 1972), tornam-se inapropriados. Visando sanar essa deficiência, Zhao e Tsiatis (1997) e Zhao e Tsiatis (1999) propuseram novos estimadores para a função de sobrevivência e, em Zhao e Tsiatis (2001), foi desenvolvido um teste análogo ao teste log-rank para comparar duas funções de sobrevivência. Todos os métodos considerados levam em conta a ocorrência de censura informativa. Neste trabalho avaliamos criticamente esses métodos, aplicando-os para estimar e testar curvas de sobrevivência associadas ao TAQV no estudo do ICESP. Por fim, utilizamos um método empírico, baseado na técnica de reamostragem bootstrap, a m de propor uma generalização do teste de Zhao e Tsiatis para mais do que dois grupos. === The motivation for this research is related to a study undertaken at the Cancer Institute at São Paulo (ICESP), which comprises the follow up of eight hundred and eight patients with advanced cancer. The patients are followed up from the first admission to the intensive care unit (ICU) for a period up to two years. The main objective is to evaluate the quality-adjusted lifetime (QAL). According to Gelber et al. (1989), the combination of both this information leads to informative censoring; therefore, traditional methods of survival analisys, such as the Kaplan-Meier estimator (Kaplan and Meier, 1958) and log-rank test (Peto and Peto, 1972) become inappropriate. For these reasons, Zhao and Tsiatis (1997) and Zhao and Tsiatis (1999) proposed new estimators for the survival function, and Zhao and Tsiatis (2001) developed a test similar to the log-rank test to compare two survival functions. In this dissertation we critically evaluate and summarize these methods, and employ then in the estimation and hypotheses testing to compare survival curves derived for QAL, the proposed methods to estimate and test survival functions under informative censoring. We also propose a empirical method, based on the bootstrap resampling method, to compare more than two groups, extending the proposed test by Zhao and Tsiatis.
|