Formulação dual em mecânica da fratura utilizando elementos de contorno curvos de ordem qualquer

Neste trabalho, apresenta-se a formulação do método dos elementos de contorno dual (MECD) aplicada a análise de problemas da Mecânica da Fratura Elástica Linear (MFEL). O objetivo da pesquisa consiste em avaliar o fator de intensidade de tensão (FIT) de sólidos bidimensionais fraturados, por meio de...

Full description

Bibliographic Details
Main Author: Kzam, Aref Kalilo Lima
Other Authors: Coda, Humberto Breves
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2009
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/18/18134/tde-03032010-083004/
Description
Summary:Neste trabalho, apresenta-se a formulação do método dos elementos de contorno dual (MECD) aplicada a análise de problemas da Mecânica da Fratura Elástica Linear (MFEL). O objetivo da pesquisa consiste em avaliar o fator de intensidade de tensão (FIT) de sólidos bidimensionais fraturados, por meio de três técnicas distintas, quais são: a técnica da correlação dos deslocamentos, a técnica com base no estado de tensão na extremidade da fratura e a técnica da integral. As análises são realizadas utilizando o código computacional desenvolvido durante a pesquisa, que incorpora as formulações diretas em deslocamento e em força de superfície, do método dos elementos de contorno (MEC), com destaque para a utilização dos elementos de contorno curvos de ordem qualquer. No MECD as equações integrais singulares do tipo O(\'R POT.-1\') e O(\'R POT.-2\') são avaliadas satisfatoriamente com o Método da Subtração de Singularidade (MSS). Dessas integrais resultam termos analíticos, os quais são avaliados por meio do Valor Principal de Cauchy (VPC) e da Parte Finita de Hadamard (PFH). Compara-se o código desenvolvido com as soluções analíticas encontradas na literatura inclusive na análise de sólidos com fraturas predefinidas e para a avaliação do FIT, que produziram bons resultados. === This work presents the dual boundary element formulation applied to linear crack problem. The goal of this research is the evaluation of stress intensity factor for two-dimensional crack problem using three different techniques, which are: the technique of correlation of displacements, the technique based on the state of tension at the crack tip and J integral. The analysis is performed using the computational code developed during the research, which incorporates the direct formulations related to displacement and traction boundary element equation. A greater emphasis is given to the use of curved boundary element of any order. In the dual boundary element method the singular integral equations with singular others O(\'R POT.-1\') and O(\'R POT.-2\') are assessed satisfactorily with the application of the singularity subtraction method. The results of these singular integrals are evaluated by the Cauchy Principal Value and the Hadamard Finite Part. The code developed is compared with the analytical solutions found in the literature including the analysis of solids with fractures default and evaluation of stress intensity factor, which produced good results.