Análise de influência local nos modelos de riscos múltiplos

Neste trabalho, é apresentado vários métodos de diagnóstico para modelos de riscos múltiplos. A vantagem desse modelo é sua flexibilidade em relação aos modelos de risco simples, como, os modelos Weibull e log-logístico, pois acomoda uma grande classe de funções de risco, função de risco não-monóton...

Full description

Bibliographic Details
Main Author: Fachini, Juliana Betini
Other Authors: Ortega, Edwin Moises Marcos
Format: Others
Language:pt
Published: Biblioteca Digitais de Teses e Dissertações da USP 2007
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/11/11134/tde-02102007-085202/
Description
Summary:Neste trabalho, é apresentado vários métodos de diagnóstico para modelos de riscos múltiplos. A vantagem desse modelo é sua flexibilidade em relação aos modelos de risco simples, como, os modelos Weibull e log-logístico, pois acomoda uma grande classe de funções de risco, função de risco não-monótona, por exemplo, forma de "banheira" e curvas multimodal. Alguns métodos de influência, assim como, a influência local, influência local total de um indivíduo são calculadas, analizadas e discutidas. Uma discussão computacional do método do afastamento da verossimilhança, bem como da curvatura normal em influência local são apresentados. Finalmente, um conjunto de dados reais é usado para ilustrar a teoria estudada. Uma análise de resíduo é aplicada para a seleção do modelo apropriado. === In this paperwork is present various diagnostic methods for polyhazard models. Polyhazard models are a flexible family for fitting lifetime data. Their main advantage over the single hazard models, such as the Weibull and the log-logistic models, is to include a large amount of nonmonotone hazard shapes, as bathtub and multimodal curves. Some influence methods, such as the local influence, total local influence of an individual are derived, analyzed and discussed. A discussion of the computation of the likelihood displacement as well as the normal curvature in the local influence method are presented. Finally, an example with real data is given for illustration. A residual analysis is performed in order to select an appropriate model.